• Title/Summary/Keyword: transparent electrode film

Search Result 250, Processing Time 0.032 seconds

Influence of Ag Nano-buffer Layer Thickness on the Opto-electrical Properties of AZO/Ag Transparent Electrode Films (Ag 나노완충층 두께에 따른 AZO/Ag 투명전극의 전기광학적 특성 연구)

  • Eom, Tae-Young;Song, Young-Hwan;Moon, Hyun-Joo;Kim, Dae-Hyun;Cho, Yun-Ju;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.272-276
    • /
    • 2016
  • Al doped ZnO (AZO) single layer and AZO/Ag bi-layered films were deposited on the glass substrates by radio frequency and direct current magnetron sputtering and then the effect of Ag buffer layer on the electrical and optical properties of the films was investigated. The thicknesses of AZO upper layer was kept as 100 nm, while Ag buffer layer was varied from 5 to 15 nm. The observed results mean that opto-electrical properties of the AZO films is influenced with Ag buffer layer and AZO film with 10 nm thick Ag buffer layer show the higher opto-electrical performance than that of the AZO single layer film prepared in this study.

The property of surface morphology of AZO films deposited at low temperature with post-annealing (저온증착 AZO 박막의 분위기 후열처리에 따른 표면 형상 특성)

  • Jeong, Yun-Hwan;Chen, Ho;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.417-418
    • /
    • 2008
  • Transparent conductive oxide (TCO) are necessary as front electrode or anti-reflecting coating for increasing efficiency of LED and Photodiode. In this paper, aluminum-doped Zinc oxide films(AZO) were prepared by DC magnetron sputtering on glass(corning 1737) and Si substrate at temperature of $100^{\circ}C$ and then annealed at temperature of $400^{\circ}C$ for 1hr in Ar and vaccum. The AZO films were etched in diluted HCL (0.5 %) to examine the surface morphology properties. After annealing, Structural and electrical property were investigated. The c-axis orientation along (002) plane was enhanced and the electrical resistivity of the AZO film decreased from $1.1\times10^{-1}$ to $1.6\times10^{-2}{\Omega}cm$. We observed textured structure of AZO thin film etched for 2s.

  • PDF

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

The Effects of Substrate Temperature on Electrical and Physical Properties of ZnO:Al for the Application of Solar Cells (태양전지 응용을 위한 ZnO:Al 박막의 전기적·물리적 특성에서 증착 온도의 영향)

  • Park, Chan Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.39-43
    • /
    • 2021
  • In the case of ZnO:Al thin films, it is the best material that can replace ITO that is mainly used as a transparent electrode in electronic devices such as solar cells and flat-panel displays. In this study, ZnO:Al films were fabricated by using the RF dual magnetron sputtering method at various substrate temperatures. As the substrate temperature increased, the crystallinity of the ZnO:Al thin films was improved, and the electrical conductivity and electrical properties of the thin film improved owing to the increase in grain size. In addition, the surface roughness of the ZnO:Al thin films increased due to changes in the surface and density of the thin films. Moreover, the substrate temperature increased the density of thin films and improved their transmittance. To be applied to solar cells and other several electronic devices in the future, the hardness and adhesion properties of the thin film improve as the substrate temperature increases.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

Properties of CIGS thin film developed with evaporation system (진공증발원 시스템을 이용한 CIGS 박막의 특성평가에 관한 연구)

  • Kim, Eundo;Jeong, Ye-Sul;Jung, Da Woon;Eom, Gi Seog;Hwang, Do Weon;Cho, Seong Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.85.1-85.1
    • /
    • 2010
  • $Cu(In,Ga)Se_2$ (CIGS) thin film solar cell is currently 19.5% higher efficiency and developing a large area technology. The structure of CIGS solar cell that make five unit layers as back contact, light absorption, buffer, front transparent conducting electrode and antireflection to make them sequentially forming. Materials and various compositions of thin film unit which also manufacture a variety method used by the physical and chemical method for CIGS solar cell. The construction and performance test of evaporator for CIGS thin film solar cell has been done. The vapor pressures were changed by using vapor flux meter. The vapor pressure were copper (Cu) $2.1{\times}10^{-7}{\sim}3.0{\times}10^{-7}$ Torr, indium (In) $8.0{\times}10^{-7}{\sim}9.0{\times}10^{-7}$ Torr, gallium (Ga) $1.4{\times}10^{-7}{\sim}2.8{\times}10^{-7}$ Torr, and selenium (Se) $2.1{\times}10^{-6}{\sim}3.2{\times}10^{-6}$ Torr, respectively. The characteristics of the CIGS thin film was investigated by using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and photoluminescence (PL) spectroscopy using a He-Ne laser. In PL spectrum, temperature dependencies of PL spectra were measured at 1137 nm wavelength.

  • PDF

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation (비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구)

  • Kwon, Y.Y.;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.53-57
    • /
    • 2017
  • The most representative transparent electrode in the modern society is ITO (Indium Tin Oxide). ITO is widely used in general for touch panels and displays due to its high electrical and optical properties. However, in general, mechanical deformation causes deterioration and destruction of device properties because ITO is basically vulnerable to mechanical deformation. Therefore, the in-depth understanding on the stability of ITO film during various mechanical deformations is necessary. In this study, the reliability and mechanical properties ITO sample having different length, width, and area were investigated. The electrical stability was estimated according to electrical resistance change. The stability was dropped as the sample length, and width increased and the sample area decreased. The electrical stability of ITO film was correlated with twisting strain including tensile, compressive and shear stress.

Thickness Dependance of Al-doped ZnO Thin Film on Polymer Substrate (폴리머 기판상의 Al-doped ZnO 박막의 두께에 따른 특성 변화)

  • Kim, B.S.;Kim, E.K.;Kang, H.I.;Lee, K.I.;Lee, T.Y.;Song, J.T.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.105-109
    • /
    • 2007
  • In this paper, we fabricated TCO (transparent conductive oxide) electrode on flexible substrate in order to study effects of electrical and optical properties according to Al-doped ZnO(AZO) film thickness. The thickness of film was from 100 nm to 500 nm and was controlled by changing deposition time. We used High Resolution X-ray Diffractometer (HR-XRD) to analyze crystal structure and UV-visible spectrophotometer to measure property of optical transmittance, respectively. The surface images are obtained by using ESEM (Environment Scanning Electron Microscopy). In this experiment, all the AZO films deposited on flexible substrate show high transmittance over 90% and especially in the films with 400 nm and 500 nm thickness, the resistivity ($4.5{\times}10^{-3}\;{\Omega}-cm$) and optical bandgap energy (3.61 eV) are superior to the other films.