• Title/Summary/Keyword: transparent display

Search Result 496, Processing Time 0.028 seconds

Simple fabrication process and characteristic of a screen-printed triode-CNT field emission arrays for the flat lamp application

  • Jung, Y.J.;Park, J.H.;Jeon, S.Y.;Park, S.J.;Alegaonkar, P.S.;Yoo, J.B.;Park, C.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1214-1218
    • /
    • 2006
  • We introduced simple fabrication process for field emission devices based on carbon nanotubes (CNTs) emitters. Instead of using the ITO material as a transparent electrode, a metal (Au) with thickness of 5-20nm was used. Moreover, the ITO patterning process was eliminated by depositing metal layer, before the CNT printing process. In addition, the thin metal layer on photo resist (PR) layer was used as UV block. We fabricated the CNT field emission arrays of triode structure with simple process. And I-V characteristics of field emission arrays were measured. The maximum current density of $254{\mu}A/cm2$ was achieved when the gate and the anode voltage was kept 150V and 3000V, respectively. The distance between anode and cathode was kept constant.

  • PDF

Effect of the structural and electrical characteristics of TCO thin films on the performance of OLED devices (TCO 박막의 구조 및 전기적 특성에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Yu-Lim;Lee, Kyu-Mann
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.270-270
    • /
    • 2010
  • OLED device is one of the most attractive and alternative display components, which stems primarily from the self-emission, large intrinsic viewing angle, and fast switching speed. However, because of its relatively short history of development, much remains to be studied in terms of its basic device physics, manufacturing processes, and reliability etc. Especially among several issues, it should be noted that the device characteristics are very sensitive to the surface properties of transparent conducting oxide (TCO) electrode materials. In this study, we have investigated the performance of OLED devices as a function of sheet resistance and surface roughness of TCO thin films. For this purpose, ITO and IZO thin films were deposited by r. f. magnetron sputtering under various ambient gases (Ar, Ar+O2 and Ar+H2, respectively). The crystal structure and surface morphology were examined by using XRD and FESEM. Also, electrical and optical properties were Investigated.

  • PDF

Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric (원자층 증착을 이용한 고 유전율 Al2O3 절연 박막 기반 Indium Zinc 산화물 트랜지스터의 저전압 구동)

  • Eom, Ju-Song;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.432-436
    • /
    • 2017
  • IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.

Interactive media facade based on image processing (영상처리 기반의 인터랙티브 미디어파사드에 관한 연구)

  • Jun, Ha-Ree;Yun, Hyun-Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.46-54
    • /
    • 2015
  • Development of digital technology is advancing to levels which influence the formation of city landscapes and spaces. The use of media facade is creating modernized city-spaces with contemporary application of various digital mediums. In this way, media facade functions as media-art in an artistic point of view, while also providing the means for buildings to become landmarks in a city-scape point of view. Going a step further, media facade using interaction is drawing a lot of attention as it enables communication with the city inhabitants instead of one-way contents provision. This paper will research such interactive media facade using transparent display glass currently being used as construction building material and its potential growth.

Photoelectric Conversion Properties of Dye-sensitized Solar Cell in the Transparent Electrode of Textured-AZO/AZO/Glass (Textured-AZO/AZO/Glass 투명전극을 갖는 염료감응 태양전지의 광전변환 특성)

  • Xu, Bing;Park, Choon-Bae;Hoang, Geun-C.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • We were studied that AZO conductive thin film can substitute for FTO electrode in dye sensitized solar cell. Three types of AZO films were deposited on soda-lime glass(AZO/glass, AZO/AZO/glass, textured AZO/AZO/glass) using RF magnetron sputtering process and investigated their properties of electrical, optical, and photoelectric conversion rate. The textured AZO/AZO/glass has the lowest resistivity of $3.079{\times}10^{-4}\;{\Omega}cm$ among other films. And the optical transmittance rate was better than both non textured AZO/AZO/glass and FTO/glass in the visible region. After manufacturing dye solar cells using the three types of AZO films, the textured AZO/AZO/glass showed the highest photoelectric conversion rate of 3.68% among AZO samples. But the transformation rate was slightly lower than FTO cells (4.52%). However, the conductive film of textured AZO/AZO/glass can be applicable to use an electrode in solar cells as cost-effective products.

HAND GESTURE INTERFACE FOR WEARABLE PC

  • Nishihara, Isao;Nakano, Shizuo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.664-667
    • /
    • 2009
  • There is strong demand to create wearable PC systems that can support the user outdoors. When we are outdoors, our movement makes it impossible to use traditional input devices such as keyboards and mice. We propose a hand gesture interface based on image processing to operate wearable PCs. The semi-transparent PC screen is displayed on the head mount display (HMD), and the user makes hand gestures to select icons on the screen. The user's hand is extracted from the images captured by a color camera mounted above the HMD. Since skin color can vary widely due to outdoor lighting effects, a key problem is accurately discrimination the hand from the background. The proposed method does not assume any fixed skin color space. First, the image is divided into blocks and blocks with similar average color are linked. Contiguous regions are then subjected to hand recognition. Blocks on the edges of the hand region are subdivided for more accurate finger discrimination. A change in hand shape is recognized as hand movement. Our current input interface associates a hand grasp with a mouse click. Tests on a prototype system confirm that the proposed method recognizes hand gestures accurately at high speed. We intend to develop a wider range of recognizable gestures.

  • PDF

A Study on the Dielectric Breakdown voltage and Transparency of Dielectric Layer in AC PDP (AC PDP 유전층의 절연파괴 전압과 투명도에 관한 연구)

  • Park, Jeong-Hu;Lee, Seong-Hyeon;Kim, Gyu-Seop;Son, Je-Bong;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • The dielectric layers in AC plasma display panel(PDP) are essential to the discharge cell structure, because they protect metal electrodes from sputtering by positive ion bombarding in discharge plasma and form a sheath of wall charges which are essential to memory function of AC PDP. This layer should have high dielectric breakdown voltage, and also be transparent because the luminance of PDP is strongly correlated this layer. In this paper, we discussed the dielectric breakdown voltage and transparency of the dielectric layer under various conditions. As a result, on the $15\mum$ thickness, the minimum dielectric breakdown voltage was 435V and the transmission coefficient was about 80% after $570^{\circ}C$ firing process. It can be proposed that the resonable dielectric thickness in AC PDP is $15\mum$ because it has about 75V margin on the maximum applied voltage.

  • PDF

A Study on TCO thin film for transparent display upper electrode (투명 디스플레이 실현을 위한 상부 전극용 TCO 박막제조 및 특성 분석)

  • Kim, Eun-Seo;Park, Hyung-Jun;Kim, Howoon;Kim, Hae-Mun;Park, Jin-Soo;Kim, Young-Eun;Kim, In-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.253-254
    • /
    • 2014
  • 본 연구에서는 DC magnetron sputter 장비를 사용하여 투명 디스플레이 실현을 위한 상부전극용 박막을 제작하였고, 제작된 박막의 광학적 특성과 물리적 특성을 분석하였다. 소다라임 유리기판 인가된 전판 위에 증착한 ITO의 경우에는 박막의 증착률압에 따라 두께와 굴절률이 증가함을 보였으며, 증착된 박막의 광학적 투과도는 박막의 두께에 따라 접차 감소함을 확인 하였고, 반면 고전도 특성을 가진 알루미늄 박막은 증착된 박막의 두께가 두꺼울수록 전면의 반사도가 증가하여 투명전극으로 사용할 수 없었으나 스퍼터의 내부의 분위기압을 높이고 인가된 전압을 높고 단시간에 박막을 증착하였을 경우에 약 70%정도 현재 보다 향상된 투명전극으로의 광학적 투과도 특성을 보였다.

  • PDF

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

Characteristics of Parylene Polymer and Its Applications (파릴렌 고분자의 특성 및 응용)

  • Yoon Young-Soo;Choi Sun-Hee;Kim Joo-Sun;Nam Sang-Cheol
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.443-450
    • /
    • 2004
  • Parylene polymer thin film shows excellent homogeneous coverage chracteristics when it was deposited onto very complex three dimensional solid matters, such as deep hole and micro crack. The parylene deposition process can be conducted at room temperature although most of chemical vapor deposition processes request relatively high processing temperature. Therefore, the parylene coating process does not induce any thermal problems. Parylene thin film is transparent and has extremly high chemical stability. For example, it shows high chemical stability with high reactive chemical solutions such as strong acid, strong alkali and acetone. The bio-stability of this material gives good chances to use for a packaging of biomedical devices and electronic devices such as display. In this review article, principle of deposition process, properties and application fields of parylene polymer thin film are introduced.