• Title/Summary/Keyword: transparent display

Search Result 495, Processing Time 0.022 seconds

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

A Study on Transparent Polymer Composite Films with High Emissivity (고 열방사 투명 고분자 합성막 연구)

  • Kim, Jeong-Hwan;Shin, Dong-Kyun;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.29-33
    • /
    • 2013
  • We have fabricated transparent polymer composite films with high thermal emissivity, which can be used for heat dissipation of transparent electronics. PMMA (poly(methyl methacrylate)) solution with high transparency and thermal emissivity is mixed with various fillers (carbon nanotubes (CNTs), aluminum nitride (AlN), or silicon carbide (SiC)) with high thermal conductivity. We have achieved the thermal emissivity as high as 0.94 by the addition of CNTs. Compared with the PMMA film on glass, however, the addition of AlN or SiC is shown to rather decrease the thermal emissivity. It is also observed that the thickness of the PMMA film does not affect its thermal emissivity. To avoid any degradation of the thermal conductivity, therefore, the PMMA film thickness is desirable to be $1{\mu}m$. There also exists a tradeoff between the optical transmittance and thermal conductivity on the selection of the amount of fillers.

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

The Transparent Semiconductor Characteristics of ZnO Thin Films Fabricated by the RF Magnetron Sputtering Method (RF magnetron sputtering법으로 형성된 ZnO 박막의 투명반도체 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Recently, the growth of ZnO thin film on glass substrate has been investigated extensively for transparent thin film transistor. We have studied the phase transition of ZnO thin films from metal to semiconductor by changing RF power in the deposition process by RF magnetron sputtering system. The structural, electric, and optical properties of the ZnO thin films were investigated. The film deposited with 75 watt of RF power showed n-type semiconductor characteristic having suitable resistivity $-3.56\;{\times}\;10^{+1}\;{\Omega}cm$, carrier concentration $-2.8\;{\times}\;10^{17}\;cm^{-3}$, and mobility $-0.613\;cm^2V^{-1}s^{-1}$ while other films by 25, 50, 100 watt of RF power closed to metallic films. From the surface analysis (AFM), the number of crystal grain of ZnO thin film increased as RF power increased. The transmittance of the film was over 88% in the visible region regardless of the change in RF power.

The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer (대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교)

  • Joung, Dae-Young;Lee, Young-Joon;Park, Joon-Yong;Yi, Jun-Sin
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

Characterization of Transparent Electrodes using Carbon Nanotubes Coated by Conductive Polymers (전도성 고분자가 코팅된 탄소 나노튜브 투명전극의 특성 분석)

  • Kim, Bu-Jong;Han, Sang-Hoon;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • This study demonstrates transparent electrodes with characteristics desirable for touch screen panels using carbon nanotubes (CNTs). This has been accomplished by depositing CNTs on glass substrates via spray coating and then depositing thin conductive polymer films on the CNTs via spin coating. For all of the samples, such as CNTs, conductive polymers, and polymer-coated CNTs, the surface morphologies, sheet resistances, visible transmittances, chromatic properties are characterized as functions of their preparation conditions, such as the spray times for CNTs and the spin speeds for conductive polymers. The experimental results confirm that only the polymer-coated CNTs can satisfy all of the requirements that are required for electrodes of touch screen panels, such as the sheet resistance lower than $100{\Omega}/sq$, the visible transmittance higher than 80 %, and the yellowness smaller than 1.

Improvement of Transparent Electrodes Based on Carbon Nanotubes Via Corona Treatment on Substrate Surface (기판의 코로나 표면처리에 의한 탄소 나노튜브 투명전극의 물성 향상)

  • Han, Sang-Hoon;Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, we investigate the effects of corona-discharge pre-treatment on the properties of carbon nanotubes (CNTs) which are used as flexible transparent electrodes. The CNTs are deposited on PET (polyethylene terephthalate) substrates using a spray coating method. Prior to the deposition of CNTs, the PET substrates are corona-treated by varying the feeding directions of the PET substrate and the numbers of treatments. The variations in the surface morphologies and roughnesses of the PET substrates due to corona-treatment are characterized via atomic force microscopy (AFM). Dynamic contact angles (DCAs) of the corona-treated PET substrates are measured and analyzed as functions of the treatment conditions. Also, the sheet resistances and visible-range transmittances of the CNTs deposited on PET substrates are measured before and after bending test. The experimental results obtained in this study provide strong evidences that the adhesive forces between CNTs and PET substrates can be substantially enhanced by corona-discharge pretreatment.

Electrical, Structural, Optical Properties of the AZO Transparent Conducting Oxide Layer for Application to Flat Panel Display (평판디스플레이 응용을 위한 AZO 투명전도막의 전기적, 구조적 및 광학적 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Park, Dong-Wha;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1976-1981
    • /
    • 2009
  • Transparent conducting aluminum-doped zinc oxide (AZO) thin films were deposited on Coming glass substrate using an Gun-type rf magnetron sputtering deposition technology. The AZO thin films were fabricated with an AZO ceramic target (Zn: 98wt.%, $Al_2O_3$: 2wt.%). The AZO thin films were deposited with various growth conditions such as the substrate temperature, oxygen pressure. X -ray diffraction (XRD), UV/visible spectroscope, atomic force microscope (AFM), and Hall effect measurement system were done in order to investigate the properties of the AZO thin films Among the AZO thin films prepared in this study, the one formed at conditions of the substrate temperature $100^{\circ}C$, Ar 50 sccm, $O_2$ 5 sccm and working pressure 5 motor showed the best properties of an electrical resistivity of $1.763{\times}10^{-4}\;[{\Omega}{\cdot}cm]$, a carrier concentration of $1.801{\times}10^{21}\;[cm^{-3}]$, and a carrier mobility of $19.66\;[cm^2/V{\cdot}S]$, which indicates that it could be used as a transparent electrode for thin film transistor and flat panel display applications.

Fabrication of the ITO/Mesh-Ag/ITO Transparent Electrode using Ag Nano- Thin Layer with a Mesh Structure and Its Characterization (메쉬 구조의 Ag 나노박막을 이용한 ITO/Mesh-Ag/ITO 고전도성 투명전극 제조 및 특성 분석)

  • Lee, Dong Hyun;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.100-104
    • /
    • 2019
  • The 'ITO/Ag/ITO' multilayers as a highly conductive and transparent electrode, even with the optimum thickness conditions, the transmittances were much lower than those of a single ITO layer on some ranges of the visible wavelength. In order to improve the transmittance, Ag layer was formed with mesh structure. Where, the thickness of the Ag layer was about 10 nm and the space between the Ag lines was varied from 2.9 ㎛ to 19.6 ㎛ with the fixed Ag width of about 1.2 ㎛ in order to vary an open ratio of the Ag mesh structure. The transmittance and sheet resistance in the ITO/Mesh-Ag/ITO multilayer structure were analyzed depending on the open ratio. As a result, a trade off in the open ratio was necessary in order to obtain the transmittance as high as possible and the sheet resistance as possible low. By the open ratio of about 86%, in the ITO/Mesh-Ag/ITO multilayer structure, the transmittance was nearly same as the single ITO layer and the sheet resistance was about 62.3 Ω/.

Characteristics of a Flexible Transparent Electrode based on a Silver Nanowire-polymer Composite Material with a Mesh Pattern Formed without Lithography (리소그래피 없이 제작된 그물망 구조의 은나노와이어-고분자화합물 복합소재 기반 유연 투명전극의 특성)

  • Park, Tae Gon;Park, Jong Seol;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, a new method for fabricating flexible transparent electrodes based on silver nanowire-polymer (AgNW-PEDOT:PSS) composite materials having a mesh pattern formed by a solution-based process without lithography was proposed. By optimizing conditions such as the amount of ultraviolet (UV) photosensitizer injected into the suspension of AgNW and PEDOT:PSS, UV exposure time, and deionized (DI) washing time, a clear and uniform mesh pattern was obtained. For the fabricated AgNW-PEDOT:PSS-based mesh-type electrodes, characteristics such as electrical sheet resistance, light transmittance, haze, and bending flexibility were analyzed according to the mixing ratio of AgNW and PEDOT:PSS included in the suspension. The fabricated mesh electrodes typically exhibited a low electrical sheet resistance of less than 20 Ω/sq while maintaining a high transmittance of 80% or more. In addition, it was confirmed from the results of analyzing the effect of PEDOT:PSS on the characteristics of the mesh-type AgNW-PEDOT electrode that the optical visibility was greatly enhanced by reducing the surface roughness and haze, and the bending flexibility was remarkably improved.