• 제목/요약/키워드: transparent conducting oxide film

검색결과 214건 처리시간 0.03초

RF 마그네트론 스퍼터링에 의해 합성된 Nb-doped TiO2 투명전극의 특성 (Properties of Nb-doped TiO2 Transparent Conducting Oxide Film Fabricated by RF Magnetron Sputtering)

  • 김민영;조문성;임동건;박재환
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.204-208
    • /
    • 2012
  • $TiO_2$ ($Ti_{1-x}Nb_xO_2$, x= 0.04~0.06) transparent conducting oxide film was fabricated by RF magnetron sputtering process and their electrical, optical, stability properties were studied. When the Nb 4 at% sputtering target was used with RF power 120 W, pressure 8 mTorr, post-annealing temperature $600^{\circ}C$, the resistivity of TNO film was $4{\times}10^{-4}\;{\Omega}-cm$. The optical transmittance in the visible wavelength was ca. 86%. TNO films require heat treatment during or after the deposition process. When the film was deposited at room temperature and post-annealed at $600^{\circ}C$, the lowest resistivity was obtained. When the TNO film was exposed to high temperature and humidity, the resistivity of the film was rather decreased. The stability to temperature and humidity implies that the TNO film could be a appropriate candidate for In-free, ZnO-free transparent conducting oxide materials.

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

반응성 직류마그네트론 스퍼터링에 의한 ITO박막 형성에 관한 연구 (The study on formation of ITO by DC reacrive magnetron sputtering)

  • 하홍주;조정수;박정후
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.699-707
    • /
    • 1995
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It has many fields of application such as Solar Cell, Liquid Crystal display, Vidicon on T.V, transparent electrical heater, selective optical filter, and a optical electric device , etc. In the recent papers on several TCO( transparent conducting oxide ) material, the study is mainly focusing on ITO(indium tin oxide) because ITO shows good results on both optical and electrical properties. Nowaday, in the development of LCD(Liquid Crystal display), the low temperature process to reduce the production cost and to deposit ITO on polymer substrate (or low melting substrate) has been demanded. In this study, we prepared indium tin oxide(ITO) by a cylindrical DC magnetron sputtering with Indium-tin (9:1) alloy target instead of indium-tin oxide target. The resistivity of the film deposited in oxygen partial pressure of 5% and substrate temperature of 140.deg. C. is 1.6*10$\^$-4/.ohm..cm with 85% optical transmission in viaible ray.

  • PDF

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • 이성욱;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers)

  • 김지훈;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

ZnO:Al 과 ITO 투명전도막을 이용한 플랙시블 타입 DSCs변환효율 특성 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:AI / ITO TCO layers)

  • 김지훈;곽동주;성열문;김태우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2009
  • In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode, ZnO:Al films were prepared by RF magnetron sputtering method. The effects of surface treatment and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the transparent conducting oxide electrode were measured and compared with each other. By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a chemical surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. And DBD surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. Although the luminance and luminous efficiency of the transparent conducting oxide electrode using ZnO:AI are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of TCO.

  • PDF

IZTO 투명 반도체 박막의 전기적 특성에 대한 산소분압의 영향 (Effects of oxygen partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films)

  • 이근영;신한재;한동철;김상우;이도경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.93-94
    • /
    • 2009
  • The influences of $O_2$ partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films deposited at room temperature by magnetron sputtering have been investigated. The experimental results show that by varying the $O_2$ partial pressure during deposition, electron mobilities of IZTO thin film can be controlled between 7 and $25\;cm^2/Vs$. For conducting films, the carrier concentration and resistivity are ${\sim}\;10^{21}\;cm^{-3}$ and ${\sim}\;10^{-4}\;{\Omega}\;cm$, respectively. Concerning semiconducting films, under 12% $O_2$ partial fraction, the electron concentration is $10^{18}\;cm^{-3}$, showing the promising candidate for the application of transparent thin film transistors.

  • PDF

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF