• Title/Summary/Keyword: transmit time

Search Result 1,125, Processing Time 0.031 seconds

A transmit function implementation of wireless LAN MAC with QoS using single transmit FIFO (단일 송신 피포를 이용한 QoS 기능의 무선랜 MAC의 송신 기능 구현)

  • Park, Chan-Won;Kim, Jung-Sik;Kim, Bo-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.237-239
    • /
    • 2004
  • Wireless LAN Voice over IP(VoIP) equipment needs Quality-of-Service(QoS) with priority for processing real-time traffic. This paper shows transmit function implementation of wireless LAN(WLANs) media access control(MAC) support VoIP, and it has an advantage of guarantee of QoS and is adaptable to VoIP or mobile wireless equipment. The IEEE 802.11e standard in progress has four queues according to four access categories(AC) for transmit and the MAC transmits the data based on EDCA. The value of AC is from AC0 to AC3 and AC3 has the highest priority. The transmit method implemented at this paper ensure QoS using one transmit FIFO in hardware since real-time traffic data and non real-time traffic data has the different priority. The device driver classifies real-time data and non real-time data and transmit data to hardware with information about data type. The hardware conducts shorter backoff and selects faster AIFS slot for real-time data than it for non real-time data. Therefor It make give the real-time traffic data faster channel access chance than non real-time data and enhances QoS.

  • PDF

Performance Analysis of Angle Time Transmit Diversity in Urban Area (도심환경에서 각도-시간 송신다이버시티의 성능분석)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.200-205
    • /
    • 2011
  • In multipath fading channel, diversity is essential to mitigate the impairments. In this paper, we have proposed the angle diversity scheme called ATTD(Angle Time Transmit Diversity) instead of Alamouti's STTD(Space Time Transmit Diversity) and have analyzed the performance of the proposed scheme when signal powers caused by the transmission to different angles are different. Based on it, we have measured the wireless vector-channel in the urban area, which has lots of high-story buildings, using the data collected from the 8 by 4 smart array antenna system that we made. According to the measured data, the received signals from different angles have different signal powers. Our performance analysis results show that the proposed scheme has better performance than the space diversity scheme when the received path signal power is at least -7dB compare to the strongest path signal power.

Performance Enhancement by Interference Cancellation Scheme in Transmit Diversity using STBC over Time Selective Fading Channel (Time Selective Fading 채널 환경에서 STBC를 이용하는 송신 다이버시티에서 간섭제거기법에 의한 성능 개선)

  • Kim, Jang-Wook;Jin, Yang-Hee;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • Transmit diversity using STBC(Space Time Block Code) provides the same diversity gain as MRRC(Maximal Ratio Receiver Combining), when the fading channel is constant across two consecutive symbols. But, when the channel condition is changed for the two consecutive symbols, the transmit diversity using STBC does not offer good performance due to the large doppler shift. In this paper, we have proposed a interference cancellation scheme for performance enhancement in transmit diversity using STBC over time selective fading channel. Simulation results for various doppler shift rates are presented for the transmit diversity using the proposed scheme.

  • PDF

Decoding Performance of Quasi-Orthogonal Space Time Block Code Using Optimal Transmit Power Allocation (최적 송신전력 할당을 이용한 준직교성 시공간 블록부호의 복호화 성능)

  • Choe Kwang don;Kim Bong joon;Cho Young ha;Park Sang kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.282-287
    • /
    • 2005
  • The space time block code(STBC) can not provide simultaneously both full diversity and full transmission rate in a transmit diversity system having more than two transmit antennas.. There are a quasi orthogonal STBC for four transmit antennas that provides full transmission rate and minimized interference. Recently, a simple correlation canceling algorithm is introduced to achieve full diversity from STBC considering four transmit antennas. In this paper, we propose a new decoding procedure using the power allocation at the transmitter and subtraction interference process at the receiver to achieve a better performance without noise enhancement.

Distributed Quasi-Orthogonal Space-Time Block Code for Four Transmit Antennas with Information Exchange Error Mitigation

  • Tseng, Shu-Ming;Wang, Shih-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2411-2429
    • /
    • 2013
  • In this paper, we extend the case of information exchange error mitigation for the distributed orthogonal space-time block code (DOSTBC) for two transmit antennas to distributed quasi-orthogonal space-time block code (DQOSTBC) for four transmit antennas. A rate 1 full-diversity DQOSTBC for four transmit antennas is designed. The code matrix changes according to different information exchange error cases, so full diversity is maintained even if not all information exchange is correct. We also perform analysis of the pairwise error probability. The performance analysis indicates that the proposed rate 1 DQOSTBC outperforms rate 1/2 DOSTBC for four transmit antennas at the same transmission rate, which is confirmed by the simulation results.

Combination of Array Processing and Space-Time Coding In MC-CDMA System

  • Hung Nguyen Viet;Fernando W. A. C
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.302-309
    • /
    • 2004
  • The transmission capacity of wireless communication systems may become dramatically high by employ multiple transmit and receive antennas with space-time coding techniques appropriate to multiple transmit antennas. For large number of transmit antennas and at high bandwidth efficiencies, the receiver may become too complex whenever correlation across transmit antennas is introduced. Reducing decoding complexity at receiver by combining array processing and space-time codes (STC) helps a communication system using STC to overcome the big obstacle that prevents it from achieving a desired high transmission rate. Multi-carrier CDMA (MC-CDMA) allows providing good performance in a channel with high inter-symbol interference. Antenna array, STC and MC-CDMA system have a similar characteristic that transmit-receive data streams are divided into sub-streams. Thus, there may be a noticeable reduction of receiver complexity when we combine them together. In this paper, the combination of array processing and STC in MC-CDMA system over slow selective-fading channel is investigated and compared with corresponding existing MC-CDMA system using STC. A refinement of this basic structure leads to a system design principle in which we have to make a trade off between transmission rate, decoding complexity, and length of spreading code to reach a given desired design goal.

  • PDF

Transmit Diversity Using Windowing Scheme in OFDM System (OFDM 시스템에서 윈도윙 기법을 이용한 송신 다이버시티)

  • Kim, Yong-June;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.871-877
    • /
    • 2007
  • In this paper, we propose a new transmit diversity scheme using window functions in orthogonal frequency division multiplexing (OFDM) system. Transmit diversity of the scheme is varied with window functions and the condition of the window function to maximize transmit diversity is derived. The proposed scheme can be considered as a generalization of the diversity schemes such as cyclic delay diversity (CDD), orthogonal transmit diversity (OTD), and frequency switched transmit diversity (FSTD).

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

Unitary precoding space time block coding with limited feedback (폐-루프 다중안테나시스템에서 제한된 피드백을 이용한 시공간블록부호기술의 적용)

  • Kim, Jeong-Mi;Oh, Dong-Jin;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.85-88
    • /
    • 2005
  • Space-time code is a good solution to get transmit diversity. During the last years a number of space-time block codes have been proposed for use in multiple transmit antenna systems. This code, however, was presented only for the special case of the certain numbers of transmit antennas and the certain modulation schemes. and designed under the assumption that the transmitter has no knowledge about the channel. In this work, on the other hand, we consider the case when the transmitter has partial, but not perfect knowledge about the channel. This system can have full diversity for arbitrary number of the transmit antennas with a little bits of feedback.

  • PDF

A Effectiveness of Multi-Transmit Parallel Technique on Magnetic Resonance Imaging of FOV Less Than 26cm (자기공명영상검사 시 26cm 이하 영상영역의 Multi-Transmit 기법의 유용성)

  • Son, Soon-Yong;Choi, Kwan-Woo;Park, Kyeong-Jin;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.429-435
    • /
    • 2015
  • The purpose of this study was to prospectively estimate the effectiveness of multi-transmit parallel technique in reduced FOV(Field of View) less than 26 cm. Homogeneity, SNR(signal to noise ratio) and acquisition time were measured and compared by setting FOV less than 26cm on the T1 and T2 weighted images using ACR phantom. The multi-transmit parallel technique resulted in significantly faster image acquisition by 46.8 % in T1 weighted images and 18.9% in T2 weighted images. The homogeneity and SNR values had no significant difference between pre and post application of the multi-transmit parallel technique. In conclusion, this study demonstrates the feasibility of multi-transmit parallel technique in FOV less than 26cm with a rapid acquisition and maintained image quality.