• Title/Summary/Keyword: transmit power minimization

Search Result 18, Processing Time 0.017 seconds

Stochastic Low-Power and Buffer-Stable Routing for Gigabit Wireless Video Networks (기가빗 비디오 네트워크에서의 추계적 저전력 버퍼안정 라우팅)

  • Kim, Joongheon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.491-494
    • /
    • 2013
  • This paper proposes a stochastic/dynamic routing protocol which aims the minimization of the summation of time average expected power expenditure with buffer stability in mobile ad-hoc 60 GHz wireless networks. By using 60 GHz RF, the wireless devices can transmit/receive 1080p HD video signals without compression. In addition, our algorithm works without centralized controller, so that the distributed operation is available. The novelty of the proposed algorithm was also verified by simulations.

Power Saving Scheme by Distinguishing Traffic Patterns for Event-Driven IoT Applications

  • Luan, Shenji;Bao, Jianrong;Liu, Chao;Li, Jie;Zhu, Deqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1123-1140
    • /
    • 2019
  • Many Internet of Things (IoT) applications involving bursty traffic have emerged recently with event detection. A power management scheme qualified for uplink bursty traffic (PM-UBT) is proposed by distinguishing between bursty and general uplink traffic patterns in the IEEE 802.11 standard to balance energy consumption and uplink latency, especially for stations with limited power and constrained buffer size. The proposed PM-UBT allows a station to transmit an uplink bursty frame immediately regardless of the state. Only when the sleep timer expires can the station send uplink general traffic and receive all downlink frames from the access point. The optimization problem (OP) for PM-UBT is power consumption minimization under a constrained buffer size at the station. This OP can be solved effectively by the bisection method, which demonstrates a performance similar to that of exhaustive search but with less computational complexity. Simulation results show that when the frame arrival rate in a station is between 5 and 100 frame/second, PM-UBT can save approximately 5 mW to 30 mW of power compared with an existing power management scheme. Therefore, the proposed power management strategy can be used efficiently for delay-intolerant uplink traffic in event-driven IoT applications, such as health status monitoring and environmental surveillance.

Energy Optimized Transmission Strategy in CDMA Reverse Link: Graph Theoretic Approach (역방향 CDMA 시스템에서 에너지 최적화된 전송기법: 그래프 이론적 접근)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.3-9
    • /
    • 2015
  • We investigate rate scheduling and power allocation problem for a delay constrained CDMA systems. Specifically, we determine an energy efficient scheduling policy, while each user maintains the short term (n time slots) average throughput. We consider a multirate CDMA system where multirate is achieved by multiple codes. Each code can be interpreted as a virtual user. The aim is to schedule the virtual users into each time slot, such that the sum of transmit energy in n time slots is minimized. We then show that the total energy minimization problem can be solved by a shortest path algorithm. We compare the performance of the optimum scheduling with that of TDMA-type scheduling.

Massive MIMO with Transceiver Hardware Impairments: Performance Analysis and Phase Noise Error Minimization

  • Tebe, Parfait I.;Wen, Guangjun;Li, Jian;Huang, Yongjun;Ampoma, Affum E.;Gyasi, Kwame O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2357-2380
    • /
    • 2019
  • In this paper, we investigate the impact of hardware impairments (HWIs) on the performance of a downlink massive MIMO system. We consider a single-cell system with maximum ratio transmission (MRT) as precoding scheme, and with all the HWIs characteristics such as phase noise, distortion noise, and amplified thermal noise. Based on the system model, we derive closed-form expressions for a typical user data rate under two scenarios: when a common local oscillator (CLO) is used at the base station and when separated oscillators (SLOs) are used. We also derive closed-form expressions for the downlink transmit power required for some desired per-user data rate under each scenario. Compared to the conventional system with ideal transceiver hardware, our results show that impairments of hardware make a finite upper limit on the user's downlink channel capacity; and as the number of base station antennas grows large, it is only the hardware impairments at the users that mainly limit the capacity. Our results also show that SLOs configuration provides higher data rate than CLO at the price of higher power consumption. An approach to minimize the effect of the hardware impairments on the system performance is also proposed in the paper. In our approach, we show that by reducing the cell size, the effect of accumulated phase noise during channel estimation time is minimized and hence the user capacity is increased, and the downlink transmit power is decreased.

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

A PAPR Reduction Technique by the Partial Transmit Reduction Sequences (부분 전송 감소열에 의한 첨두대 평균 전력비 저감 기법)

  • Han Tae-Young;Yoo Young-Dae;Choi Jung-Hun;Kwon Young-Soo;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.562-573
    • /
    • 2006
  • It is required to reduce the peak-to-average power ratio(PAPR) in an orthogonal frequency division multiplexing system or a multicarrier system. And it is needed to eliminate the transmission of the side information in the Partial Transmit Sequences. So, in this paper, a new technique is proposed, where the subcarriers used for the multiple signal representation are only utilized for the reduction of PAPR to eliminate the burden of transmitting the side information. That is, it is proposed by taking the modified minimization criteria of partial transmit sequences scheme instead of using the convex optimization or the fast algorithm of tone reservation(TR) technique As the result of simulation, the PAPR reduction capability of the proposed method is improved by 3.2 dB dB, 3.4 dB, 3.6 dB with M=2, 4, 8(M is the number of partition in the so-called partial transmit reduction sequences(PTRS)), when the iteration number of fast algorithm of TR is 10 and the data rate loss is 5 %. But it is degraded in the capability of PAPR reduction by 3.4 dB, 3.1 dB, 2.2 dB, comparing to the TR when the data rate loss is 20 %. Therefore, the proposed method is outperformed the TR technique with respect to the complexity and PAPR reduction capability when M=2.

Hybrid Full Frequency Precoding for Integrated Remote Wireless Sensor and Multibeam Satellite Networks

  • Li, Hongjun;Dong, Feihong;Gong, Xiangwu;Deng, Changliang;Jia, Luliang;Wang, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2546-2566
    • /
    • 2016
  • This paper investigates an efficient transmission scheme for the remote wireless sensors to receive information which is rarely discussed in the integrated remote wireless sensor and multibeam satellite networks (IWSMSNs). The networks can be employed to exchange sensing information for emergency scenario, ocean scenario, and so on, which are isolated from available terrestrial networks. As the efficient transmission link is important to the IWSMSNs, we propose a hybrid full frequency (HFF) precoding by taking advantage of frequency reuse and multiple-input multiple-output (MIMO) precoding. Considering energy efficiency and sinks fairness are crucial to transmission link, thus the HFF precoding problems are formulated as transmit power minimization (TPM) and max-min fair (MMF) received signal to interference plus noise ratio (SINR) problems, which can be transformed to indefinite quadratic optimization programs. Then this paper presents a semi-definite programming (SDP) algorithm to solve the problems for the IWSMSNs. The promising potential of HFF for the real IWSMSNs is demonstrated through simulations.

Contention-Free Access Protocol Based Energy-Efficient Transmission for Wireless PANs (비경쟁 접근 프로토콜 기반 WPAN을 위한 에너지 효율적인 전송기법)

  • Joo, Yang-Ick;Lee, Yeon-Woo;Jung, Min-A;Choi, Myeong-Soo;Kim, Seo-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.450-457
    • /
    • 2008
  • One of very essential techniques for enlarging lifetime of energy-constrained wireless personal area network (WPAN) devices is energy-efficient transmission technique. If the WPAN is operated based on a TDMA protocol, the satisfaction of QoS requirements at each allocated time slot is another important factor to be considered. We therefore propose an energy-efficient transmission scheme for WPANs operating with a contention-free medium access protocol such as TDMA, as well as satisfying QoS requirement. The proposed algorithm determines the optimum combination of transmit power, physical data rate and fragment size required to simultaneously minimize the energy consumption and satisfy the required QoS in each assigned time duration, considering all the possible energy-minimization related parameters. The proposed algorithm demonstrated the improved performance results in terms of throughput and energy consumption via computer simulation.