• Title/Summary/Keyword: transmission towers

Search Result 137, Processing Time 0.042 seconds

Two case studies on structural analysis of transmission towers under downburst

  • Yang, FengLi;Zhang, HongJie
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.685-701
    • /
    • 2016
  • Downbursts are of great harm to transmission lines and many towers can even be destroyed. The downburst wind field model by Chen and Letchford was applied, and the wind loads of two typical transmission towers in inland areas and littoral areas were calculated separately. Spatial finite element models of the transmission towers were established by elastic beam and link elements. The wind loads as well as the dead loads of conductors and insulators were simplified and applied on the suspension points by concentrated form. Structural analysis on two typical transmission towers under normal wind and downburst was completed. The bearing characteristics and the failure modes of the transmission towers under downburst were determined. The failure state of tower members can be judged by the calculated stress ratios. It shows that stress states of the tower members were mainly controlled by 45 degree wind load. For the inland areas with low deign wind velocity, though the structural height is not in the highest wind velocity zone of downburst, the wind load under downburst is much higher than that under normal wind. The main members above the transverse separator of the legs will be firstly destroyed. For the littoral areas with high deign wind velocity, the wind load under downburst is lower than under normal wind. Transmission towers are not controlled by the wind loads from downbursts in design process.

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Development of Compact Towers with Insulation Arm in Korea (절연암 적용 컴팩트 철탑 개발)

  • Lee, Won-kyo;Yun, Cheol-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.63-66
    • /
    • 2018
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea as well as the other countries. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed compact towers that are more attractive, well blend into the surrounding environment and much more economical than underground transmissions. This paper shows the design of a compact towers with insulation arm, in order to reduce the height of tower and the separation between phases. The compact tower can be installed in a narrow right-of-way. Insulation arms are easily applied to lattice and steel tubular towers instead of steel arms. Compact towers with insulation arm are also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people. Compact tower compared with a conventional tower, insulation arms reduces the width and height of the tower by 20% and 15% respectively.

Seismic analysis of transmission towers under various line configurations

  • Lei, Y.H.;Chien, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.241-264
    • /
    • 2009
  • In this paper, the dynamic behavior for a group of transmission towers linked together through electrical wires and subjected to a strong ground motion will be investigated in detail. In performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by using the efficient cable elements and the 3-D beam elements both considering geometric nonlinearities. In addition, to enhance the reliability and applicability of analytical outcome, a sophisticated soil-structure interaction model will be utilized in analyses. The strength capacities and the fracture occurrences for the main members of the tower are examined with the employment of the appropriate strength interaction equations. It is expected that by aid of this investigation, those who are engaged in code constitution or in practical designing of transmission towers may gain a better insight into the roles played by the interaction force between towers and wires and by the configurations of transmission lines under strong earthquake.

A Study on the Measurement of Footing Resistance of Transmission Towers with Overhead Grounding wires (가공지선이 연결된 송전철탑의 탑각저항 측정에 관한 연구)

  • Lee, Won-Kyo;Choi, Jong-Kee;Lee, Young-Woo;Choi, In-Hyuk;Kim, Kyung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.61-64
    • /
    • 2010
  • Footing Resistance of a 154 kV transmission towers in korea is commonly required to be less than 15 ohm to avoid lightning back-flashover accident. The periodic measurement of Footing Resistance is important to verify that the grounding performance of the towers has been maintained good. Towers are electrically connected in parallel with overhead grounding wire, therefore footing resistance of each tower will be measured after disconnecting the overhead ground wires from the towers. however, In this paper, three direct measurement methods of footing resistance are presented. There are very useful methods without disconnecting overhead ground wires from the tower under measurement. They are compared in KEPCO 154 kV transmission towers. The experimental results describe performances of them.

Practical optimization of power transmission towers using the RBF-based ABC algorithm

  • Taheri, Faezeh;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.463-479
    • /
    • 2020
  • This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

Development of Arm Insulator for Self-Build Based Emergency Tower (긴급복구용 자주조립식 철주 절연암 개발)

  • Min, Byeong-Wook;Wi, Hwa-Bog;Park, Jae-Ung;Lee, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.107-108
    • /
    • 2007
  • Overhead transmission lines are completely exposed to the environment. This causes faults in transmission lines due to natural environmental conditions. In some cases, transmission towers are damaged by typhoons and snow, as well as sleet on the transmission lines. It takes a lot of time to repair the damaged towers. For emergency restoration purposes, steel poles are installed to temporarily supply power. Before 2003, emergency restoration steel poles were made of angled steel, which required a large number of beams, bolts, etc. In addition, the foundation of the steel pole and ground wire was constructed using excavation and burial methods, therefore it required a lot of manpower and time to construct temporary transmission lines. In September 2003, typhoon Maemi, whose maximum wind speed was 60m/s, hit Korea. 'Maemi' destroyed transmission lines in the Busan and Geojea area, causing long blackouts. To reduce the recovery time to the damaged transmission lines, self-build based emergency towers were developed. self-build based emergency towers reduced recovery time from 24 hours to 4 hours or less. However, the self-build based emergency tower had no arms, so the temporary transmission lines could only be constructed without curves in line routes. In this paper, solving these self-build based emergency tower limitations, using insulated arms(designed for use with the self-build based emergency tower), shall be explained.

  • PDF