• Title/Summary/Keyword: transmission of visible light

Search Result 221, Processing Time 0.029 seconds

Microwave Assisted Synthesis of Graphene-Bi2MoO6 Nanocomposite as Sono-Photocatalyst

  • Tang, Jia-Yao;Zhu, Lei;Fan, Jia-Yi;Sun, Chen;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill (고 에너지 볼밀을 이용한 Blue 텅스텐산화물 나노입자의 제조와 특성)

  • Kim, Myung-Jae;Lee, Kwang-Seok;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.

Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds (다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.112-117
    • /
    • 2021
  • In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.

A Hybrid PAPR Reduction Scheme for Optical Wireless OFDM Communication Systems

  • Abdulkafi, Ayad Atiyah;Alias, Mohamad Yusoff;Hussein, Yaseein Soubhi;Omar, Nazaruddin;Salleh, Mohd Kamarulzamin Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1136-1151
    • /
    • 2018
  • This paper proposes a new hybrid scheme to decrease the high peak to average power ratio (PAPR) of optical orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems. The PAPR causes nonlinear signal distortions and high power requirements for the VLC transmitter (light emitting diode, LED). The proposed method is applicable for both direct current-biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM). In the proposed scheme, the PTS method is firstly modified to fit both optical OFDM approaches transmission and then combined with signal clipping method for further PAPR reduction and bit error rate (BER) improvement of the VLC system. The performance of hybrid scheme has been evaluated and compared with the original OFDM based VLC system, conventional PTS and clipping methods. The results show that the hybrid scheme outperforms other methods in terms of both the PAPR reduction and BER performance.

Indoor Location-based Emergency Call Service System for Ships using VLC Technology (가시광통신을 이용한 선박 내 위치 기반 응급호출 시스템)

  • Hong, Seung-Beom;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2836-2843
    • /
    • 2015
  • Due to metallicity of materials, a vessel has a limitation to adopt RF-based wireless communication technologies for the inner communication means. Visible Light Communication(VLC) can be a sound alternative to dissolve such a limitation. Using a visual light as a transmission medium, VLC is free from radio interferences and restriction of radio usages which are typically related to RF-based wireless communications. In addition, VLC can not only require the facility cost relatively low because of being possibly converged with existing LED illumination, but also be harmless to the human body. This paper proposes an indoor location-based emergency call service system solution for ships using the VLC technology that supports 256Kbps data rate and 5m transmission distance. This paper presents real implementation and testing results of the solution which verifies the propriety of the proposal.

Additional location data transmission and Remote-controller App. Development using Smart Phone (스마트폰 기반 부가 위치 데이터 전송 및 Mobile 리모컨 App. 개발에 관한 연구)

  • Lee, JungHoon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.12-16
    • /
    • 2013
  • In this paper, we proceeded a study about the mobile software applications using smartphone technology. Firstly, we proposed a communication which a position data transmission technique using LED flashlight with built-in smartphone and we develop the application to perform a remote controller for beam-forming communication based on visible light associated with the position of Smartphone user. OOK modulation was applied for transmitting location data via LED backlight flash of smartphone and PD is used for detecting receiving light. In case of remote controller application which was controlled by WiFi IP-networking and it controls LED direction for beam-forming communication. These suggestion can be a good example for ubiquitous position recognition system using smart phone and software.

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

Partition and Caching Mechanism for GML Visualization on Mobile Device (모바일 디바이스에서 GML 가시화를 위한 분할 및 캐싱 기법)

  • Song, Eun-Ha;Park, Yong-Jin;Han, Won-Hee;Jeong, Young-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1025-1034
    • /
    • 2008
  • In this paper, we developed GridGML for efficiently supplying a GML and visualizing the map with partitioning map and caching method to a mobile device. In order to overcome the weighting of a file, which is the biggest weakness of a GML, GridGML extracts only the most necessary parts for the visualization of the map among GML attributes, and makes the file light as a class instance by applying an offset value. GridGML manages a partition based on the visualization area of a mobile device to visualize the map to a mobile device in real time, and transmits the partition area by serializing it for the benefit of transmission. Also, the received partition area is compounded in a mobile device and is visualized by being partitioned again as four visible areas based on the display of a mobile device. Then, the area is managed by applying a caching algorithm in consideration of repetitiveness for a received map for the efficient operation of resources. Also, in order to prevent the delay in transmission time as regards the instance density area of the map, an adaptive map partition mechanism is proposed for maintaining the transmission time uniformly.

  • PDF

The optical characteristics study of sandwich structure based liquid crystal for the radiation detector application (방사선 검출기 적용을 위한 액정 기반 다층 구조의 광 특성 평가)

  • Shin, Jung-Wook;Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Yul;Kim, Jin-Young;Lee, Gun-Hwan;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.390-392
    • /
    • 2005
  • The digital radiation detectors are used clinically by diagnostic apparatus. However the digital radiation detector are some problem like high operating voltage, light blurring, low conversion efficiency, low fill factor, etc. Thus we propose a new radiation detector that the photoconductor layer and liquid crystal layer are coupled in sandwich structure. X-ray absorption in the photoconductor layer controls the state of the liquid crystal via creation of charge carrier and the light modulation of liquid crystal make image formation. The advantage of the new radiation detector is that high resolution image is acquired and the signal amplification is possible by external visible light source. In this study, we study the optical properties and electrical properties of the new radiation detector to irradiate X-ray. The Mercury Iodide($HgI_2$) was used by photoconductor material, and the aluminum is used by reflective layer. The thickness of Mercury Iodide is about $200{\mu}m$, the operating voltage of the liquid crystal is 1.5~5V. The electrical properties of Mercury Iodide was measured, and the transmission efficiency of liquid crystal was measured by modulation potential.

  • PDF