• Title/Summary/Keyword: transmission expansion

Search Result 357, Processing Time 0.025 seconds

A Study on the Distribution Planning using Computer Systems (전산 시스템을 이용한 배전계획 연구 - CADPAD를 이용한 배전계획 -)

  • Hwang, S.Ch.;Moon, B.H.;Hong, S.H.;Jang, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.205-207
    • /
    • 1993
  • Distribution planning requires comprehensive knowledge about not only distribution but also transmission/subtransmission system expansion plan. At the same time, distribution planning is very time consuming and a series of routine job which involves a lot of experience and efforts of planning engineers. Since the quality of distribution planning depends upon the ability of planning engineers, the economy of investment should be taken into consideration. The object of this study is to establish a computerized distribution planning system which helps distribution engineers finding a new system expansion plan. It provides the engineers with at optimal system expansion plan which satisfies the condition of both reliability and economy.

  • PDF

A Modified Simple Acoustic Analysis of Rectangular Simple Expansion Chamber with Consideration of Higher Order Modes (고차모드를 고려한 사각형 단순 확장관의 간편음향해석법의 개선)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.340-347
    • /
    • 1999
  • The acoustic performance of reactive type single expansion chamber can be calculated theoretically by plane wave theory. But higher order model should be considered to widen the frequency range. Mode matching method has been developed to consider higher order modes, but very complicated algebra should be used. Munjal suggested a numerical collocation method, which can overcome the shortcomings of mode matching method, using the compatibility conditions for acoustic pressure and particle velocity at the junctions of area discontinuities. But the restriction of Munjal's method is that the ratio between the area of inlet(or outlet) pipe and that of chamber must be natural number. In this paper, the new method was suggested to overcome the shortcomings of Munjal's method. The predictions by this method was also compared with those by the finite element method and Munjal's method in order to demonstrate the accuracy of the modified method presented here.

  • PDF

Hydrodynamic performance of a vertical slotted breakwater

  • George, Arun;Cho, Il Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.468-478
    • /
    • 2020
  • The wave interaction problem with a vertical slotted breakwater, consisting of impermeable upper, lower parts and a permeable middle part, has been studied theoretically. An analytical model was presented for the estimation of reflection and transmission of monochromatic waves by a slotted breakwater. The far-field solution of the wave scattering involving nonlinear porous boundary condition was obtained using eigenfunction expansion method. The empirical formula for drag coefficient in the near-field, representing energy dissipation across the slotted barrier, was determined by curve fitting of the numerical solutions of 2-D channel flow using CFD code StarCCM+. The theoretical model was validated with laboratory experiments for various configurations of a slotted barrier. It showed that the developed analytical model can correctly predict the energy dissipation caused by turbulent eddies due to sudden contraction and expansion of a slotted barrier. The present paper provides a synergetic approach of the analytical and numerical modelling with minimum CPU time, for better estimation of the hydrodynamic performance of slotted breakwater.

Bandwidth-Efficient Transmission Protocol for Cooperative MIMO: Design and Analysis (분산 다중 안테나 기반의 상호 협력 통신을 위한 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.418-425
    • /
    • 2008
  • In this paper, we propose two different types of cooperative transmission protocols, referred to as spatial multiplexing with receive diversity (SMRD), that are bandwidth-efficient. We show that the BER performance can be significantly improved with a proper design of SMRD protocol under the AF (Amplify-and-Forward) and the DF (Decode-and-Forward) modes of relaying, when there is no interference among all symbols transmitted in the same time slot. BER analysis and our simulation result show that the proposed transmission protocol achieves a significant gain over no-cooperation (direct transmission) without any bandwidth expansion.

A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy (온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구)

  • Choi, Dong-Chan;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.

Wave Control Performance of Moored Pontoon-Type Floating Breakwater (계류된 사각형 부유식 방파제의 파랑제어성능)

  • Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.35-44
    • /
    • 2002
  • In this paper, the analytic studies on the wave control performance of moored pontoon-type floating breakwater are presented. A two-dimensional eigenfunction expansion method is adopted to study the motion responses and the transmission coefficients of pontoon-type floating breakwater in beam waves. The stiffness coefficients of mooring line are idealized as linear elastic spring. Comparison of the analytical results with a numerical results (FEM) shows good agreement over a wide range of frequencies. The performance of mooed pontoon-type floating breakwater is tested with various design parameters such as sectional geometry, mooring line characteristics and wave frequencies. It is found that the properly designed floating breakwater can be an effective wave control structure.

  • PDF

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.