Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves

다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼

  • Cho, Il-Hyoung (Department of Oceanic Information and System Engineering, Cheju National University)
  • 조일형 (제주대학교 해양정보시스템공학과)
  • Published : 2007.12.31

Abstract

The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

고유함수전개법을 사용하여 구한 파일 방파제에 의한 규칙파의 산란 해석해를 다방향 불규칙파로 확장하였다. 규칙파중 입사파의 주파수 그리고 입사각을 변화시키면서 구한 반사율과 투과율 그리고 파랑하중을 가지고 산란파 스펙트럼과 하중 스펙트럼을 표현하였다. 주파수와 입사각의 함수인 2차원 스펙트럼을 적분하여 산란파와 파랑하중의 대푯값을 구하고 방향분포함수, 주파향, 잠긴깊이 그리고 공극율이 투과율과 파랑하중에 미치는 영향을 살펴보았다.

Keywords

References

  1. 윤성범, 이종인, 남두현, 김선형 (2006). 유공벽의 두께를 고려한 파의 에너지손실계수. 한국해안해양공학회지, 18(4), 321-328
  2. 조일형, 고혁준 (2007). 원형 파일 방파제에 의한 반사율과 투과율. 한국해안해양공학회지, 19(1), 38-44
  3. Abul-Azm, A. G. (1993). Wave diffraction through submerged breakwaters. J. Waterway, Port, Coastal, and Ocean Eng. ASCE, 119, 587-605 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(587)
  4. ASTF, (1992). Wave barrier research. Engineering Report, Alaska Sci. and Technol. Foun., 39
  5. Bouws, F., Gunther, H., Rosenthal, W., Vincent, C.L. (1985). Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res., 90, 975-986 https://doi.org/10.1029/JC090iC01p00975
  6. Flagg, C.N. and Newman, J.N. (1971). Sway added-mass coefficients for rectangular profiles in shallow water. J. Ship Research, 15, 257-265
  7. Haskind, M. D. (1959). Radiation and diffraction by a flat plate floating vertically. Prikl. Mat. Mekh., 23, 546-556
  8. Hesselmann, K. (1973). Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsches Hydr. Zeit., A12, 1-95
  9. Huang, Z. (2007). Wave interaction with one or two rows of closely spaced rectangular cylinders. Ocean Engineering, 34, 1584-1591 https://doi.org/10.1016/j.oceaneng.2006.11.002
  10. Isaacson, M., Premasiri, S., Yang, G. (1998). Wave interactions with vertical slotted barrier. J. Waterway, Port, Coastal, and Ocean Eng. ASCE, 124, 118-126 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:3(118)
  11. Liu. P. L-F. and Abbaspour, M. (1982). Wave scattering by a rigid thin barrier. J. Waterway, Port, Coastal, and Ocean Div. ASCE, 108, 479-490
  12. Losada, I. J., Losada, M. A., Roldan, A. J. (1992). Propagation of oblique incident waves past rigid vertical thin barriers. Appl. Ocean Res. 14, 191-199 https://doi.org/10.1016/0141-1187(92)90014-B
  13. Losada, I. J., Losada, M. A., Losada, R. (1994). Wave spectrum scattering by vertical thin barriers. Appl. Ocean Res. 16, 123-128 https://doi.org/10.1016/0141-1187(94)90008-6
  14. Mei, C. C., Liu, Philip L-F. and Ippen, A.T. (1974). Quadratic loss and scattering of long waves. J. Waterways Harbors and Coastal Eng. ASCE, 100, 217-239
  15. Suh, K.D., Shin, S. and Cox, D.T. (2006). Hydrodynamic characteristics of pile-supported vertical wall breakwaters. J. Waterway, Port, Coastal, and Ocean Eng. ASCE, 132(2), 83-96 https://doi.org/10.1061/(ASCE)0733-950X(2006)132:2(83)
  16. Uesell, F. (1974). The effect of a fixed vertical barrier on surface waves in deep water. Proc. Camb. Phil. Soc., 43, 372- 382