• Title/Summary/Keyword: transmission distribution

Search Result 1,550, Processing Time 0.022 seconds

The Design and Aging Test of Polymer Insulator for Power Transmission and Distribution (송배전용 고분자 애자의 설계와 열화시험)

  • Lee, Un-Yong;Cho, Han-Gu;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.553-555
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. In this paper, the design trend and method polymer insulator are investigated and Aging test method is analysed to know life time of insulator.

  • PDF

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

WDM Transmission Using Dispersion Compensation in Optical Transmission Links with Nonuniform Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.753-757
    • /
    • 2011
  • The possibility of implementing nonuniform residual dispersion per span (RDPS) in optical links with net residual dispersion (NRD) controlled by precompensation and postcompensation for 960 Gbps WDM transmissions is studied and discussed. The fiber optic communication links investigated in this paper consist of inline dispersion management (DM) for each fiber spans and optical phase conjugator (OPC) at mid-way of total transmission length in order to compensate for WDM signal distortions due to group velocity dispersion (GVD) and nonlinearities. It is confirmed that the effect of nonuniform RDPS distribution on system performance is not significant. It is also confirmed that the optimal NRD is obtained to be one of two values of +10 ps/nm or -10 ps/nm, which depend on the deciding of NRD controlled by precompensation or postcompensation, and the exact RDPS configurations. The effective NRD ranges resulting eye opening penalty (EOP) below 1 dB are independent on the exact RDPS distribution for relative low launch power. Therefore, results show the possibility of implementing the flexible optical links to expand network construction for WDM transmission of high bit-rate capability.

Performance Analysis on Digital TV Transmission Through CATV Networks (CATV 망을 통한 디지털 TV 전송에 대한 성능 분석)

  • Sohn, Won;Lee, Jae-Ryun;Lee, Jin-Whan
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.159-166
    • /
    • 2000
  • This paper analyzed the transmission performance when we transmited digital TV signal through analog CATV network. We considered random noise, microreflection, and composite tripple beats as channel impairment factors, and random noise and CTB( Composite Tripple Beat) are modelled as Gaussian distribution and Weibull distribution respectively. Channel modellings for microreflections are classified as three cases, and we exploited carrier recovery and blind equalizer to minimize their effects. We developed a computer simulator for the digital transmission system using DVB-C specification to analyze digital transmission performance, and found BER values according to $E_{b}$/$N_{o}$ for each configuration.

  • PDF

Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission (초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory (누적손상이론을 이용한 기계류부품의 가속수명시험법 개발)

  • Kim, Dae-Cheol;Lee, Geun-Ho;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.32
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

A Fault Location Algorithm for a Single Line Ground Fault on a Multi-Terminal Transmission Line (다단자 송전계통에서의 1선지락 고장시 고장점 표정 알고리즘)

  • 강상희;노재근;권영진
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.121-133
    • /
    • 2003
  • This paper presents a fault location algorithm for a single phase-to-ground fault on 3-terminal transmission systems. The method uses only the local end voltage and current signals. Other currents used for the algorithm are estimated by current distribution factors and the local end current. Negative sequence current is used to remove the effect of load current. Five distance equations based on Kirchhoff's voltage law are established for the location algorithm which can be applied to a parallel transmission line having a teed circuit. Separating the real and imaginary parts of each distance equation, final nonlinear equations that are functions of the fault location can be obtained. The Newton-Raphson method is then applied to calculate the estimated fault location. Among the solutions, a correct fault distance is selected by the conditions of the existence of solution. With the results of extensive S/W and H/W simulation tests, it was verified that the proposed algorithm can estimate an accurate fault distance in a 154kV model system.

Security Monitoring System for Apartment House Building Using Paver Line Carrier (전력선 통신을 이용한 집단주택 안전관리 시스템)

  • Kim, In-Soo;Kim, Kwan-Ho;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.476-478
    • /
    • 1993
  • Instead of installing new communication wiring to each house in the apartment house building. the power distribution network. which is already installed in the building. can be use as communication medium. In a safty management, by adoption of power line communication system, at remote we can monitor safty related sensors such as fire, gas leakage, burglar intrusion and emergency call which are located at each house. From this viewpoint, we developed security monitoring system for apartment house building using power lines. Security monitoring system consists of Power Line Communication-Sub Controller (PLC-SC). Power Line Communication-Main Controller (PLC-MC) and Management System (MS). Between a PLC-MC and a PLC-SC, the transmission rate is 1200 bps in power lines and modulation technique is frequency shirt keying (FSK). In between a PLC-MC and a MS, the transmission rate is 1200 bps in communication line (RS-485). As a result of this research. transmission loss is 0.1dB per meter of intrabuilding distribution network. Transmission can be reach in 250 meters. So it is enough to communicate for security monitoring system in apartment house building.

  • PDF

Comparison of Sound Pressure Level and Speech Intelligibility of Emergency Broadcasting System at T-junction Corridor Space (T자형 복도 공간의 비상 방송용 확성기 배치별 음압 레벨과 음성 명료도 비교)

  • Jeong, Jeong-Ho;Lee, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.105-112
    • /
    • 2019
  • In this study, an architectural acoustics simulation was conducted to examine the clear and uniform transmission of emergency broadcasting sound in a T junction corridor space. The sound absorption performance of the corridor space and the location and spacing of the loudspeaker for emergency broadcasting were varied. The distribution of the sound pressure level and the distribution of sound transmission indices (STI, RASTI) were compared. The simulation showed that the loudspeaker for emergency broadcasting should be installed approximately 10 m from the center of the T junction corridor connection for clear voice transmission. Narrowing the 25 m installation interval of the NFSC shows that an even clearer and sufficient volume of emergency broadcast sound can be delivered evenly.