• Title/Summary/Keyword: transmembrane protein

Search Result 284, Processing Time 0.036 seconds

TMEM39A and Human Diseases: A Brief Review

  • Tran, Quangdon;Park, Jisoo;Lee, Hyunji;Hong, Youngeun;Hong, Suntaek;Park, Sungjin;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.

A Novel Simple Method to Purify Recombinant Soluble Human Complement Receptor Type 1 (sCR 1) from CHO Cell Culture

  • Wang, Pi-Chao;Hisamune Kato;Takehiro Inoue;Masatoshi Matsumura;Noriyuki Ishii;Yoshinobu Murakami;Tsukasa Seya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • The human complement receptor type 1 (CR 1, C3 b/C4b receptor) is a polymorphic membrane glycoprotein expressed on human erythrocytes, peripheral leukocytes, plasma and renal glomerular podocytes, which consists of transmembrane and cytoplasmic domains with 30 repeating homologous protein domains known as short consensus repeats (SCR). CR1 has been used as an inhibitor for inflammatory and immune system for the past several years. Recently; it is reported that CRl was found to suppress the hyper-acute rejection in xeno-transplantation and can be used to cure autoimmune diseases. A soluble form of CRl, called sCRl, is a recombinant CRl by cleaving the transmembrane domain at C-terminus and has been expressed in Chinese Hamster Ovary (CHO) cells. Several purification methods for sCR1 from CHO cells have been reported, but most of them require complicated steps at high cost. Moreover, such methods are mostly performed under the pH condition apt to denaturing sCR1 and causes sCRl losing its activity. We here report a rapid and efficient method to purify sCR1 from CHO cell. The new method consists of a two-stage of cell culture by cultivating cells in serum medium followed by serum-free medium, and a two-stage of column purification by means of heparin and gel filtration column chromatography. By using this novel method, sCR1 can be purified in a simple and effective way with high yield and purity, furthermore, the purified sCR1 was confirmed to retain its activity to suppress the complement activation in vivo and ex vivo.

Glu-56 in Htrl is Critical for Phototaxis Signaling in Halobacterium salinarum

  • Choi, Ah-Reum;Kim, So-Young;Yoon, Sa-Ryong;Jung, Kwang-Hwan
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • The attractant (orange light) or repellent (white light) signal is transmitted from SRI (Sensory Rhodopsin I) via protein-protein interaction with its transducer Htrl (Halobacterial Transducer for Sensory Rhodopsin I) which in turn controls a cytoplasmic phospho-transfer pathway that modulates flagella motor switching in Halobacterium salinarum. Some mutations in both SRI and Htrl showed an unusual mutant phenotype called inverted signaling, in which the cell produces a repellent response to normally attractant light. Twelve mutations at the Glutamate 56 (E56) position in the second transmembrane helix of Htrl were introduced by site-specific random mutagenesis. Almost all E56 mutants showed orange-light inverted responses in pH and temperature-dependent manners except E56D and E56Y. Except for these two mutants, all mutants accelerated the $S_{373}$ decay compared to wild-type at $18^{\circ}C$. This supported that there is an interaction between SRI and the second transmembrane of Htrl. Also a structural model of Htrl based on the Tar crystal structure and the secondary structure prediction program proposed the E56 residue to be in the middle of the proton channel. The most important observation is that the E56 mutant provides the evidence that this residue is very sensitive for signal relay, which can be explained by the open and closed conformations of the channel (A and R conformations) in SRI, as was postulated by the unified conformational shuttling model for transport and signaling.

The Analysis of Seminal Plasma Proteins by Two-Dimensional Polyacrylamide Gel Electrophoresis (2-DE) in Hanwoo (Korean Native Cattle)

  • Lee, Yong-Seung;Song, Eun-Ji;Yoo, Han-Jun;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • This study was to evaluate the protein profile of seminal plasma using 2-DE in Hanwoo. Seminal plasma was harvested from five mature Hanwoo, and seminal plasma protein was extracted by M-PER Mammalian Protein Extraction Reagent. Proteins were refined by clean-up kit and quantified by Bradford method until total protein was $300\;{\mu}l$. Immobilized pH gradient (IPG) strip was used 18 cm and 3~11 NL. SDS-PAGE was used 12% acrylamide gel. Each gels were visualized by comassie brilliant blue and silver staining. These spots were analyzed by MALDI-TOF MS and searched on NCBInr. The result, 20 proteins of 36 protein spots were searched through peptide sequencing on the NCBInr. 8 proteins profiled by 2-DE were proved through previous bovine studies and the name of each protein was albumin, nucleobindin, clusterin, TIMP-2, spermadhesin Z13, spermadhesin-1 and BSP proteins (BSP 30 kDa and BSP A1/A2). 12 new proteins were ATP synthase, protein MAK16 homolog, Transmembrane protein 214, E3 ubiquitin-protein ligase BRE1A, dual serine/threonine and tyrosine protein kinase, tissue factor pathway inhibitor 2, alpha-actinin-4, RUN domain-containing protein 3B, catenin alpha-1, protein-glutamine gamma-glutamyltransferase 2, plakophilin-1 and inter-alpha-trypsin inhibitor heavy chain H1 has not been previously described in the bovine seminal plasma study. These proteins may be contribute to define the type of proteins affecting fertility of male and improve the fertilizing ability of semen in Hanwoo.

Homology Modeling of GPR18 Receptor, an Orphan G-protein-coupled Receptor

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • G-protein-coupled receptor (GPCR) superfamily is the largest known receptor family, characterized by seven transmembrane domains and considered to be an important drug target. In this study we focused on an orphan GPCR termed as GPR18. As there is no X-ray crystal structure has been reported for this receptor, we report on a homology model of GPR18. Template structure with high homology was used for modeling and ten models were developed. A model was selected and refined by energy minimization. The selected model was further validated using various parameters. Our results could be a starting point for further structure based drug design.

Does IFITM3 link inflammation to tumorigenesis?

  • Jaewoong, Lee
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.602-608
    • /
    • 2022
  • Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed.

PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes

  • Myeong-Suk Bahn;Young-Gyu Ko
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Prominin-1 (PROM1), also called CD133, is a penta-span transmembrane protein that is localized in membrane protrusions, such as microvilli and filopodia. It is known to be expressed in cancer stem cells and various progenitor cells of bone marrow, liver, kidney, and intestine. Accumulating evidence has revealed that PROM1 has multiple functions in various organs, such as eye, tooth, peripheral nerve, and liver, associating with various molecular protein partners. PROM1 regulates PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver, associating with Radixin, SMAD7, and GP130, respectively. In addition, PROM1 is necessary to maintain cancer stem cell properties by activating PI3K and β-Catenin. PROM1-deficienct mice also show distinct phenotypes in eyes, brain, peripheral nerves, and tooth. Here, we discuss recent findings of PROM1-mediated signal transduction.

Isolation and characterization of BrMDR1 a novel MDR-type ATP-binding cassette (ABC) transporter in Brassica rapa L.

  • Lee, Sun-Yong;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2009
  • A cDNA clone encoding a MDR-like ABC transporter protein was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (named as Brmdr 1; GenBank accession no.: DQ296184 ) had a total length of 4222 bp with an open reading frame of 3900 bp, and encoded a predicted polypeptide of 1300 amino acids with a molecular weight of 143.1 kDa. The BrMDR1 protein shared 71.0, 62.5, 60.0 and 58.2% identity with other MDR proteins isolated from Arabidopsis thaliana (AAN28720), Coptis japonica (CjMDR), Gossypium hirsutum (GhMDR) and Triticum aestivum (TaMDR) at amino acid level, respectively. Southern blot analysis showed that Brmdr1 was a low-copy gene. Expression pattern analysis revealed that Brmdr1 constitutively expressed in the root, stem petals and stamens, but with lower expression in leaves and open flowers. The domains analysis showed that BrMDR1 protein possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranging in "TMD1-NBD1-TMD2-NBD2" direction, which is consistent with other MDR transporters. Within NBDs three characteristic motifs common to all ABC transporters, "Walker A", "Walker B" and C motif, were found. These results indicate that BrMDR1 is a MDR-like ABC transporter protein that may be involved in the transport and accumulation of secondary metabolites.

Possible target for G protein antagonist: Identification of specific amino acid residue responsible for the molecular interaction of G$\alpha$ 16 with chemoattractant C5a receptor.

  • 이창호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.17-19
    • /
    • 2000
  • Heterotrimeric G Proteins transduce ligand binding to a wide variety of seven transmembrane cell surface receptors into intracellular signals. The currently accepted model for the activation of G protein suggests that ligand-activated receptor accelerates GDP-GTP exchange reactions on the ${\alpha}$ subunit of the heterotrimeric G protein. At least seventeen distinct isoforms of the G${\alpha}$ subunit protein have been identified in mammalian organisms. Among them, the G${\alpha}$q family consists of five members whose ${\alpha}$ subunits show different expression patterns. G${\alpha}$q and G${\alpha}$11 seem to be almost ubiquitously expressed, whereas G${\alpha}$14 is predominantly expressed in spleen, lung, kidney and testis. G${\alpha}$16 and its murine counterpart G${\alpha}$15 are expressed in hematopoietic cells and has been shown to couple a wide variety of receptors to phosphoinositide-specific phospholipase C activity. Beta-isoforms of phospholipase C were shown to be activated by all members of G${\alpha}$q family, i.e., G${\alpha}$q, G${\alpha}$11, G${\alpha}$l4 and G${\alpha}$16 subunits either in reconstitution system. or in experiments using cDNA transfection with intact Cos-7 cells.

  • PDF

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF