DOI QR코드

DOI QR Code

TMEM39A and Human Diseases: A Brief Review

  • Tran, Quangdon (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Park, Jisoo (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Lee, Hyunji (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Hong, Youngeun (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Hong, Suntaek (Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University) ;
  • Park, Sungjin (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Park, Jongsun (Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University) ;
  • Kim, Seon-Hwan (Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University)
  • Received : 2017.04.18
  • Accepted : 2017.06.13
  • Published : 2017.07.15

Abstract

Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.

Keywords

References

  1. Dobashi, S., Katagiri, T., Hirota, E., Ashida, S., Daigo, Y., Shuin, T., Fujioka, T., Miki, T. and Nakamura, Y. (2009) Involvement of TMEM22 overexpression in the growth of renal cell carcinoma cells. Oncol. Rep., 21, 305-312.
  2. Wrzesinski, T., Szelag, M., Cieslikowski, W.A., Ida, A., Giles, R., Zodro, E., Szumska, J., Pozniak, J., Kwias, Z., Bluyssen, H.A. and Wesoly, J. (2015) Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer, 15, 518. https://doi.org/10.1186/s12885-015-1530-4
  3. Hayez, A., Malaisse, J., Roegiers, E., Reynier, M., Renard, C., Haftek, M., Geenen, V., Serre, G., Simon, M., de Rouvroit, C.L., Michiels, C. and Poumay, Y. (2014) High TMEM45A expression is correlated to epidermal keratinization. Exp. Dermatol., 23, 339-344. https://doi.org/10.1111/exd.12403
  4. Ferrera, L., Caputo, A. and Galietta, L.J. (2010) TMEM16A protein: A new identity for $Ca^{2+}$-dependent $Cl^-$ channels. Physiology (Bethesda), 25, 357-363. https://doi.org/10.1152/physiol.00030.2010
  5. Ishihara, K., Suzuki, J. and Nagata, S. (2016) Role of $Ca^{2+}$ in the Stability and Function of TMEM16F and 16K. Biochemistry, 55, 3180-3188. https://doi.org/10.1021/acs.biochem.6b00176
  6. Martin-Rendon, E., Hale, S.J., Ryan, D., Baban, D., Forde, S.P., Roubelakis, M., Sweeney, D., Moukayed, M., Harris, A.L., Davies, K. and Watt, S.M. (2007) Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells, 25, 1003-1012. https://doi.org/10.1634/stemcells.2006-0398
  7. Flamant, L., Roegiers, E., Pierre, M., Hayez, A., Sterpin, C., De Backer, O., Arnould, T., Poumay, Y. and Michiels, C. (2012) TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer, 12, 391. https://doi.org/10.1186/1471-2407-12-391
  8. Lee, S., Stewart, S., Nagtegaal, I., Luo, J., Wu, Y., Colditz, G., Medina, D. and Allred, D.C. (2012) Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res., 72, 4574-4586. https://doi.org/10.1158/0008-5472.CAN-12-0636
  9. Guo, J., Chen, L., Luo, N., Yang, W., Qu, X. and Cheng, Z. (2015) Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells. Oncol. Rep., 33, 3124-3130. https://doi.org/10.3892/or.2015.3902
  10. Sun, W., Qiu, G., Zou, Y., Cai, Z., Wang, P., Lin, X., Huang, J., Jiang, L., Ding, X. and Hu, G. (2015) Knockdown of TMEM45A inhibits the proliferation, migration and invasion of glioma cells. Int. J. Clin. Exp. Pathol., 8, 12657-12667.
  11. Cuajungco, M.P., Podevin, W., Valluri, V.K., Bui, Q., Nguyen, V.H. and Taylor, K. (2012) Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochem., 114, 705-712. https://doi.org/10.1016/j.acthis.2011.12.006
  12. Hrasovec, S., Hauptman, N., Glavac, D., Jelenc, F. and Ravnik-Glavac, M. (2013) TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer. Dis. Markers, 34, 93-104. https://doi.org/10.1155/2013/427890
  13. Perez-Magan, E., Campos-Martin, Y., Mur, P., Fiano, C., Ribalta, T., Garcia, J.F., Rey, J.A., Rodriguez de Lope, A., Mollejo, M. and Melendez, B. (2012) Genetic alterations associated with progression and recurrence in meningiomas. J. Neuropathol. Exp. Neurol., 71, 882-893. https://doi.org/10.1097/NEN.0b013e31826bf704
  14. Beroukhim, R., Brunet, J.P., Di Napoli, A., Mertz, K.D., Seeley, A., Pires, M.M., Linhart, D., Worrell, R.A., Moch, H., Rubin, M.A., Sellers, W.R., Meyerson, M., Linehan, W.M., Kaelin, W.G., Jr. and Signoretti, S. (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res., 69, 4674-4681. https://doi.org/10.1158/0008-5472.CAN-09-0146
  15. Cifola, I., Spinelli, R., Beltrame, L., Peano, C., Fasoli, E., Ferrero, S., Bosari, S., Signorini, S., Rocco, F., Perego, R., Proserpio, V., Raimondo, F., Mocarelli, P. and Battaglia, C. (2008) Genome-wide screening of copy number alterations and LOH events in renal cell carcinomas and integration with gene expression profile. Mol. Cancer, 7, 6. https://doi.org/10.1186/1476-4598-7-6
  16. Gumz, M.L., Zou, H., Kreinest, P.A., Childs, A.C., Belmonte, L.S., LeGrand, S.N., Wu, K.J., Luxon, B.A., Sinha, M., Parker, A.S., Sun, L.Z., Ahlquist, D.A., Wood, C.G. and Copland, J.A. (2007) Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin. Cancer Res., 13, 4740-4749. https://doi.org/10.1158/1078-0432.CCR-07-0143
  17. Jones, J., Otu, H., Spentzos, D., Kolia, S., Inan, M., Beecken, W.D., Fellbaum, C., Gu, X., Joseph, M., Pantuck, A.J., Jonas, D. and Libermann, T.A. (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin. Cancer Res., 11, 5730-5739. https://doi.org/10.1158/1078-0432.CCR-04-2225
  18. Tun, H.W., Marlow, L.A., von Roemeling, C.A., Cooper, S.J., Kreinest, P., Wu, K., Luxon, B.A., Sinha, M., Anastasiadis, P.Z. and Copland, J.A. (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS ONE, 5, e10696. https://doi.org/10.1371/journal.pone.0010696
  19. Wang, Y., Roche, O., Yan, M.S., Finak, G., Evans, A.J., Metcalf, J.L., Hast, B.E., Hanna, S.C., Wondergem, B., Furge, K.A., Irwin, M.S., Kim, W.Y., Teh, B.T., Grinstein, S., Park, M., Marsden, P.A. and Ohh, M. (2009) Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med., 15, 319-324. https://doi.org/10.1038/nm.1922
  20. Dalgliesh, G.L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., Teague, J., Andrews, J., Barthorpe, S., Beare, D., Buck, G., Campbell, P.J., Forbes, S., Jia, M., Jones, D., Knott, H., Kok, C.Y., Lau, K.W., Leroy, C., Lin, M.L., McBride, D.J., Maddison, M., Maguire, S., McLay, K., Menzies, A., Mironenko, T., Mulderrig, L., Mudie, L., O’Meara, S., Pleasance, E., Rajasingham, A., Shepherd, R., Smith, R., Stebbings, L., Stephens, P., Tang, G., Tarpey, P.S., Turrell, K., Dykema, K.J., Khoo, S.K., Petillo, D., Wondergem, B., Anema, J., Kahnoski, R.J., Teh, B.T., Stratton, M.R. and Futreal, P.A. (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463, 360-363. https://doi.org/10.1038/nature08672
  21. Abermil, N., Guillaud-Bataille, M., Burnichon, N., Venisse, A., Manivet, P., Guignat, L., Drui, D., Chupin, M., Josseaume, C., Affres, H., Plouin, P.F., Bertherat, J., Jeunemaitre, X. and Gimenez-Roqueplo, A.P. (2012) TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. J. Clin. Endocrinol. Metab., 97, E805-E809. https://doi.org/10.1210/jc.2011-3360
  22. Singer, S.J. (1990) The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol., 6, 247-296. https://doi.org/10.1146/annurev.cb.06.110190.001335
  23. International Multiple Sclerosis Genetics Consortium (IMSGC) (2010) Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum. Mol. Genet., 19, 953-962. https://doi.org/10.1093/hmg/ddp542
  24. Varade, J., Comabella, M., Ortiz, M.A., Arroyo, R., Fernandez, O., Pinto-Medel, M.J., Fedetz, M., Izquierdo, G., Lucas, M., Gomez, C.L., Rabasa, A.C., Alcina, A., Matesanz, F., Alloza, I., Antiguedad, A., Garcia-Barcina, M., Otaegui, D., Olascoaga, J., Saiz, A., Blanco, Y., Montalban, X., Vandenbroeck, K. and Urcelay, E. (2012) Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CBLB [correction of CLBL] genes. Mult. Scler., 18, 959-965. https://doi.org/10.1177/1352458511432741
  25. Sheng, Y.J., Xu, J.H., Wu, Y.G., Zuo, X.B., Gao, J.P., Lin, Y., Zhu, Z.W., Wen, L.L., Yang, C., Liu, L., Cheng, Y.Y., Chang, Y., Yang, L.L., Zhou, F.S., Tang, X.F., Zheng, X.D., Yin, X.Y., Tang, H.Y., Sun, L.D., Cui, Y., Yang, S. and Zhang, X.J. (2015) Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res. Ther., 17, 85. https://doi.org/10.1186/s13075-015-0602-9
  26. You, Y., Zhai, Z.F., Chen, F.R., Chen, W. and Hao, F. (2015) Autoimmune risk loci of IL12RB2, IKZF1, XKR6, TMEM39A and CSK in Chinese patients with systemic lupus erythematosus. Tissue Antigens, 85, 200-203. https://doi.org/10.1111/tan.12522
  27. Lessard, C.J., Adrianto, I., Ice, J.A., Wiley, G.B., Kelly, J.A., Glenn, S.B., Adler, A.J., Li, H., Rasmussen, A., Williams, A.H., Ziegler, J., Comeau, M.E., Marion, M., Wakeland, B.E., Liang, C., Ramos, P.S., Grundahl, K.M., Gallant, C.J., Alarcon- Riquelme, M.E., Alarcon, G.S., Anaya, J.M., Bae, S.C., Boackle, S.A., Brown, E.E., Chang, D.M., Cho, S.K., Criswell, L.A., Edberg, J.C., Freedman, B.I., Gilkeson, G.S., Jacob, C.O., James, J.A., Kamen, D.L., Kimberly, R.P., Kim, J.H., Martin, J., Merrill, J.T., Niewold, T.B., Park, S.Y., Petri, M.A., Pons-Estel, B.A., Ramsey-Goldman, R., Reveille, J.D., Scofield, R.H., Song, Y.W., Stevens, A.M., Tsao, B.P., Vila, L.M., Vyse, T.J., Yu, C.Y., Guthridge, J.M., Kaufman, K.M., Harley, J.B., Wakeland, E.K., Langefeld, C.D., Gaffney, P.M., Montgomery, C.G. and Moser, K.L.; BIOLUPUS Network; GENLES Network. (2012) Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. American Journal of Human Genetics, 90, 648-660. https://doi.org/10.1016/j.ajhg.2012.02.023
  28. Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., Dong, R., Guarani, V., Vaites, L.P., Ordureau, A., Rad, R., Erickson, B.K., Wuhr, M., Chick, J., Zhai, B., Kolippakkam, D., Mintseris, J., Obar, R.A., Harris, T., Artavanis-Tsakonas, S., Sowa, M.E., De Camilli, P., Paulo, J.A., Harper, J.W. and Gygi, S.P. (2015) The bioplex network: a systematic exploration of the human interactome. Cell, 162, 425-440. https://doi.org/10.1016/j.cell.2015.06.043
  29. Lips, K.S., Pfeil, U. and Kummer, W. (2002) Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience, 115, 1-5. https://doi.org/10.1016/S0306-4522(02)00274-9
  30. Son, J.H., Shim, J.H., Kim, K.H., Ha, J.Y. and Han, J.Y. (2012) Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med., 44, 89-98. https://doi.org/10.3858/emm.2012.44.2.031
  31. Orvedahl, A., Sumpter, R., Jr., Xiao, G., Ng, A., Zou, Z., Tang, Y., Narimatsu, M., Gilpin, C., Sun, Q., Roth, M., Forst, C.V., Wrana, J.L., Zhang, Y.E., Luby-Phelps, K., Xavier, R.J., Xie, Y. and Levine, B. (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature, 480, 113-117. https://doi.org/10.1038/nature10546
  32. Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.D., Willis, J., Dawson, D., Willson, J.K., Gazdar, A.F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B.H., Bachman, K.E., Papadopoulos, N., Vogelstein, B., Kinzler, K.W. and Velculescu, V.E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268-274. https://doi.org/10.1126/science.1133427
  33. Palikaras, K., Lionaki, E. and Tavernarakis, N. (2016) Mitophagy: In sickness and in health. Mol. Cell. Oncol., 3, e1056332. https://doi.org/10.1080/23723556.2015.1056332
  34. Senft, D. and Ronai, Z.A. (2016) Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol., 39, 43-52. https://doi.org/10.1016/j.ceb.2016.02.001
  35. Bernardini, J.P., Lazarou, M. and Dewson, G. (2016) Parkin and mitophagy in cancer. Oncogene, 36, 1315-1327.
  36. Zhang, L., Ju, X., Cheng, Y., Guo, X. and Wen, T. (2011) Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles. BMC Syst. Biol., 5, 152. https://doi.org/10.1186/1752-0509-5-152
  37. Ullrich, S., Munch, A., Neumann, S., Kremmer, E., Tatzelt, J. and Lichtenthaler, S.F. (2010) The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein. J. Biol. Chem., 285, 20664-20674. https://doi.org/10.1074/jbc.M109.055608
  38. Guttula, S.V., Allam, A. and Gumpeny, R.S. (2012) Analyzing microarray data of Alzheimer's using cluster analysis to identify the biomarker genes. Int. J. Alzheimers Dis., 2012, 649456.
  39. Boada-Romero, E., Letek, M., Fleischer, A., Pallauf, K., Ramon-Barros, C. and Pimentel-Muinos, F.X. (2013) TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J., 32, 566-582. https://doi.org/10.1038/emboj.2013.8

Cited by

  1. TMEM106A inhibits cell proliferation, migration, and induces apoptosis of lung cancer cells pp.07302312, 2018, https://doi.org/10.1002/jcb.28057