• Title/Summary/Keyword: transmembrane protein

Search Result 284, Processing Time 0.023 seconds

Blockage of the Immune Complex-triggered Transmembrane Proximity Between Complement Receptor Type 3 and Microfilaments by Staurosporine and Methyl-2,5-dihydroxycinnamate

  • Poo, Ha-Ryoung;Lee, Young-Ik;Todd, Robert F. III;Petty, Howard R.
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.64-69
    • /
    • 1998
  • Recent studies have suggested that integrin (CR3) participates in the signal transduction pathways of certain GPI-anchored phagocytic receptors including $Fc{\gamma}RIIIB$. One consequence of this functional linkage is an inducible association between CR3 and cortical microfilaments that is triggered by $Fc{\gamma}RIIIB$ binding to immobilized immune complexes (IC). That this signaling event requires the co-expression of $Fc{\gamma}RIIIB$ with CR3 was documented by the use of NIH 3T3 transfectants expressing both CR3 and $Fc{\gamma}RIIIB$ (clone 3-23), CR3 alone (clone 3-19), and $Fc{\gamma}RIIIB$ alone (clone 3-15). Pretreatment of 3-23 cells with protein kinase inhibitors such as staurosporine and methyl 2,5-dihydroxycinnamate (MDHC) blocked IC-stimulated CR3 microfilament proximity without affecting the extent to which $Fc{\gamma}RIIIB$ constrains the lateral membrane mobility of a subset of CR3 on the cell surface (as measured in fluorescence recovery after photobleaching experiments). These data support that CR3 and $Fc{\gamma}RIIIB$ molecules are physically and functionally associated and that ligation of FcgRIIIB triggers CR3-dependent signal transduction.

  • PDF

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

RNA-Seq Transcriptome Analysis of the Cutlass Fish Reveals Photoreceptors Gene Expression in Peripheral Tissues (RNA-Seq transcriptome 분석을 통한 갈치 광수용체 유전자 탐색 및 mRNA 조직발현)

  • Hyeon, Ji-Yeon;Kim, Mun-Kwan;Lim, Bong-Soo;Byun, Jun-Hwan;Moon, Ji-Sung;Kang, Hyeong-Cheol;Hur, Sung-Pyo;Oh, Seong-Rip
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • The opsin family of light sensitive proteins family makes up are the universal photoreceptor molecules of all visual systems in the vertebrates including teleosts. They can change their conformation from a resting state to a signaling state upon light absorption, which activates the G-protein coupled receptor, thereby resulting in a signaling cascade that produces physiological responses. However, this species is poorly characterized at molecular level due to little sequence information available in public databases. We have investigated the opsin family of nocturnal cutlass fish using the whole transcriptome sequencing method. The opsin genes were cloned and its expression in the tissues and organs were examined by qPCR. We cloned 6 opsin genes (RRH, Opn4, Rh1, Rh2, VA-opsin, and Opn3) in retina and brain tissue. It contained the seven presumed transmembrane domains that are characteristic of the G-protein-coupled receptor family. However, short wavelength sensitive pigment (SWS) and long wavelength sensitive pigment (LWS) were not detected in this study. The mRNA expression of the 6 photoreceptor genes were detected in retina and peripheral tissue. Our studies will lead to further investigation of the photic entrainment mechanism at molecular and cellular levels in cutlass fish and can be used in comparative studies of other fishes.

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.

Isolation and expression analysis of stimulator of interferon gene from olive flounder, Paralichthys olivaceus

  • Ma, Jeong-In;Kang, Sunhye;Jeong, Hyung-Bok;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.5.1-5.8
    • /
    • 2018
  • Stimulator of interferon gene (STING) is induced by various inflammatory agents, such as lipopolysaccharide and microbial pathogens, including virus and bacteria. In this study, we obtained a full-length cDNA of a STING homolog from olive flounder using rapid amplification of cDNA ends PCR technique. The full-length cDNA of Paralichthys olivaceus STING (PoSTING) was 1442 bp in length and contained a 1209-bp open reading frame that translated into 402 amino acids. The theoretical molecular mass of the predicted protein sequence was 45.09 kDa. In the PoSTING protein, three transmembrane domains and the STING superfamily domain were identified as characteristic features. Quantitative real-time PCR revealed that PoSTING expressed in all the tissues analyzed, but showed the highest level in the spleen. Temporal expression analysis examined the significantly upregulated expression of PoSTING mRNA after viral hemorrhagic septicemia virus (VHSV) stimulation. In contrast, no significant changes in the PoSTING expression were detected in Edwardsiella tarda-challenged group compared to the un-injected control. The expression of P. olivaceus type I interferon (PoIFN-I) was also highly upregulated upon VHSV challenge. These results suggest that STING might be involved in the essential immune defense against viral infection together with the activation of IFN-I in olive flounder.

FXYD-3 expression in relation to local recurrence of rectal cancer

  • Loftas, Per;Arbman, Gunnar;Sun, Xiao-Feng;Edler, David;Syk, Erik;Hallbook, Olof
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2016
  • Purpose: In a previous study, the transmembrane protein FXYD-3 was suggested as a biomarker for a lower survival rate and reduced radiosensitivity in rectal cancer patients receiving preoperative radiotherapy. The purpose of preoperative irradiation in rectal cancer is to reduce local recurrence. The aim of this study was to investigate the potential role of FXYD-3 as a biomarker for increased risk for local recurrence of rectal cancer. Materials and Methods: FXYD-3 expression was immunohistochemically examined in surgical specimens from a cohort of patients with rectal cancer who developed local recurrence (n = 48). The cohort was compared to a matched control group without recurrence (n = 81). Results: Weak FXYD-3 expression was found in 106/129 (82%) of the rectal tumors and strong expression in 23/129 (18%). There was no difference in the expression of FXYD-3 between the patients with local recurrence and the control group. Furthermore there was no difference in FXYD-3 expression and time to diagnosis of local recurrence between patients who received preoperative radiotherapy and those without. Conclusion: Previous findings indicated that FXYD-3 expression may be used as a marker of decreased sensitivity to radiotherapy or even overall survival. We were unable to confirm this in a cohort of rectal cancer patients who developed local recurrence.

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

A systemic study on the vulnerability and fatality of prostate cancer patients towards COVID-19 through analysis of the TMPRSS2, CXCL10 and their co-expressed genes

  • Raza, Md. Thosif;Mizan, Shagufta
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.31.1-31.15
    • /
    • 2022
  • A pandemic of respiratory disease named coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is reported prostate cancer patients are susceptible to COVID-19 infection. To understand the possible causes of prostate cancer patients' increased vulnerability and mortality from COVID-19 infection, we focused on the two most important agents, transmembrane protease serine subtype 2 (TMPRSS2) and the C-X-C motif 10 (CXCL10). When SARS-CoV-2 binds to the host cell via S protein-angiotensin-converting enzyme-2 receptor interaction, TMPRSS2 contributes in the proteolytic cleavage of the S protein, allowing the viral and cellular membranes to fuse. CXCL10 is a cytokine found in elevated level in both COVID-19 and cancer-causing cytokine storm. We discovered that TMPRSS2 and CXCL10 are overexpressed in prostate cancer and COVID-19 using the UALCAN and GEPIA2 datasets. The functional importance of TMPRSS2 and CXCL10 in prostate cancer development was then determined by analyzing the frequency of genetic changes in their amino acid sequences using the cBioPortal online portal. Finally, we used the PANTHER database to examine the pathology of the targeted genes. We observed that TMPRSS2 and CXCL10, together with their often co-expressed genes, are important in the binding activity and immune responses in prostate cancer and COVID-19 infection, respectively. Finally, we found that TMPRSS2 and CXCL10 are two putative biomarkers responsible for the increased vulnerability and fatality of prostate cancer patients to COVID-19.

Transcriptional regulation of genetic variants in the SLC40A1 promoter

  • Seung Yeon Ha;Jin-Young Kim;Ji Ha Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.