• 제목/요약/키워드: transmembrane

검색결과 596건 처리시간 0.024초

국내 사육 꿩에서 분리된 뉴켓슬병 바이러스의 hemagglutinin-neuraminidase(HN) 유전자의 클론닝과 염기서열 분석 (Molecular cloning and nucleotide sequence of the gene encoding hemagglutinin-neuraminidase(HN) of Newcastle disease virus isolated from a diseased pheasant in Korea)

  • 장경수;곽길한;장승익;김지영;김태용;송영환;송희종;전무형
    • 한국동물위생학회지
    • /
    • 제25권3호
    • /
    • pp.245-257
    • /
    • 2002
  • The gene encoding the HN protein from the CBP-1 strain, a heat stable Newcastle disease virus (NDV) isolated from diseased pheasants in Korea, was characterized by reverse transcriptase- polymerase chain reaction(RT-PCR) and the nucleotide and amino acid sequences were analyzed following cloning of the HN gene. In all of the NDV strains studied, a 1.75 kb size cDNA fragment for the HN gene was generated by RT-PCR and smaller specific band sizes harboring the internal portions of the HN gene were also detected by using four pairs of primers. The RT-PCR was sensitive enough to detect viral transcripts when the virus titer was above 25 hemagglutination units. The amplified 1.75 kb cDNA was cloned into a BamHI site of the pVL1393 Baculo transfer vector. The nucleotide sequences of the 1,758 bp HN gene from the CBP-1 strain were determined by the dye terminator cyclic sequencing method. The gene sequences were compared among the strains of CBP-1, Texas GB, Beaudette C, LaSota, B1 and Ulster. The homology of the CBP-1 HN gene to other HN variants was 97.8% to Texas GB, 98.4% to Beaudette C, 95.4% to LaSota, 95.6% to B1 and 90.2% to Ulster. As the deduced 577 amino acid sequences were compared among the strains, the homology for CBP-1 HN appeared to be 96.7% to Texas GB, 97.9% to Beaudette C, 95.5% to LaSota, 95.5% to B1 and 92.7% to Ulster. It was evident that the amino acid sequences included 5 sites for N-asparagine linked glycosylation and 12 cysteine residues. The three conserved leucine residues within the predicted transmembrane domain of the HN protein are amino acid 30, 37 and 44. The three antigenic sites on the HN protein of NDV are amino acids 347(Glu), 481(Asn) and 495(Glu). These data indicate that the genotype of the CBP-1 strain is more closely associated with the strains of Texas GB and Beaudette C than it is for the LaSota, B1 and Ulster strains.

Aspergillus nidulans에서 MsnA 하위 유전자로 선별된 단당류 수송자 mstB의 기능 분석 (Characterization of a Monosaccharide Transporter mstB Isolated as a Downstream Gene of MsnA in Aspergillus nidulans)

  • 전미향;채순기
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.281-288
    • /
    • 2011
  • 스트레스 반응에 관여하는 Saccharomyces cerevisiae 전사인자인 Msn2/4의 $C_2H_2$ zinc finger 부위와 아미노산 서열 유사성을 보이는 Aspergillus nidulans MsnA의 하위 유전자 획득을 위하여 msnA 결손 돌연변이체 또는 과발현 균주에서 야생주와 비교하여 차별적으로 발현되는 유전자(Differentially Expressed Gene, DEG)들을 분리하였다. 선별된 DEG들은 염기서열 결정을 통해 해당 유전자들을 동정하였고 이들 중 DEG6는 단당류 수송자(monosaccharide transporter)로 예측된 mstB 유전자로 밝혀졌다. mstB의 발현은 MsnA 과발현에 의하여 증가되었으며 MsnA는 in vitro에서 mstB 프로모터 부위에 직접적으로 결합하였다. MstB는 12개의 막결합 부위를 가지며 A. niger의 고친화성 단당류 수송자(high-affinity monosaccharide transporter)인 MstA와 80%의 높은 아미노산 서열 동일성을 보였다. mstB 결손 돌연변이체의 표현형은 야생주와 유사하였으나 MstB가 과발현된 균주는 낮은 당 농도인 0.1% glucose 배지에서 유성생식 기관인 cleistothecia의 형성이 증가하였다. 이러한 결과는 단당류 수송자인 MstB가 유성분화 과정에서 요구되는 당의 수송에 관여하고 있음을 시사한다.

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Park, Joon Beom;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권3호
    • /
    • pp.223-229
    • /
    • 2019
  • Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR). T2DM is correlated with obesity and most T2DM medications have been developed for enhancing insulin sensitivity. Silk protein fibroin (SPF) from spiders has been suggested as an attractive biomaterial for medical purposes. We generated transgenic rice (TR) expressing SPF and fed it to diabetic $BKS.Cg-m+/+Lepr^{db}$ mice to monitor the changes in blood glucose levels and adipose tissue proteins associated with energy metabolism and insulin signaling. In the present study, the adipocyte size in abdominal fat in TR-SPF-fed mice was remarkably smaller than that of the control. Whereas the adenosine monophosphate-activated protein kinase (AMPK)-activated protein kinase and insulin receptor substrate 1 (IRS1) protein levels were increased in abdominal adipose tissues after TR-SPF feeding, levels of six-transmembrane protein of prostate 2 (STAMP2) proteins decreased. Phosphorylation of AMPK at threonine 172 and IRS1 at serine 307 and tyrosine 632 were both increased in adipose tissues from TR-SPF-fed mice. Increased expression and phosphorylation of IRS1 at both serine 307 and tyrosine 632 in adipose tissues indicated that adipocytes obtained from abdominal fat in TR-SPF-fed mice were more susceptible to insulin signaling than that of the control. STAMP2 protein levels decreased in adipose tissues from TR-SPF-fed mice, indicating that STAMP2 proteins were reducing adipocytes that were undergoing lipolysis. Taken together, this study showed that TR-SPF was effective in reducing blood glucose levels in diabetic mice and that concurrent lipolysis in abdominal adipocytes was associated with alterations of AMPK, IRS1, and STAMP2. Increased IRS1 expression and its phosphorylation by TR-SFP were considered to be particularly important in the induction of lipolysis in adipocytes, as well as in reducing blood glucose levels in this animal model.

분자 촉진제를 넘어, CD82: 전이억제자, 줄기세포 니쉬, 근육 재생 및 혈관신생에서의 역할 (Beyond the Molecular Facilitator, CD82: Roles in Metastasis Suppressor, Stem Cell Niche, Muscle Regeneration, and Angiogenesis)

  • 이현채;한정화;허진
    • 생명과학회지
    • /
    • 제31권9호
    • /
    • pp.856-861
    • /
    • 2021
  • CD82/KAI1은 분자촉진제로서 암 전이억제자로 역할이 잘 알려져 있으나, 최근 줄기 전구 세포와 혈관 신생, 근육에서 다양한 역할들이 밝혀지고 있다. 이에 본 연구진은 최근에 보고된 CD82의 다양한 기능과 역할에 관하여 총설 하고자 한다. CD82는 4개의 막 통과 도메인을 가진 테트라스파닌의 한 종류로 암의 전이 과정에 관여하는 세포접착분자들과의 상호작용을 통하여 암세포의 이동 능력을 저해한다. 암 전이 억제자로의 기능 외에도 줄기세포 니쉬에서도 그 역할이 밝혀졌다. 골수에서 분화재생능력이 뛰어난 최상위 조혈모세포(LT-HSC)에서 CD82가 발현되며, DARC와의 상호결합으로 줄기세포의 휴면을 유도한다. 줄기세포의 휴면 조절 외에도, CD82는 Rac1 활성 조절을 통해 조혈모세포의 골수로의 귀환 및 생착에도 역할을 한다. 또한, CD82는 근육 줄기 세포의 분화능을 유지시키며, 혈관 내피세포에서 세포 접착 분자와 IL-6, VEGF와 같은 사이토카인의 발현을 저해하여 혈관 신생을 억제한다. CD82는 다양한 조직 및 줄기-전구 세포에서 계급을 구별할 수 있는 핵심 세포막 표면 단백질이며, 세포 자원의 증폭 및 검증에 있어 중요하다. 다양한 기관과 세포에서 CD82의 역할과 추가적인 연구들이 줄기세포치료의 임상적 적용에 있어 큰 도움이 되기를 기대한다.

CRISPR/Cas9-mediated knockout of CD47 causes hemolytic anemia with splenomegaly in C57BL/6 mice

  • Kim, Joo-Il;Park, Jin-Sung;Kwak, Jina;Lim, Hyun-Jin;Ryu, Soo-Kyung;Kwon, Euna;Han, Kang-Min;Nam, Ki-Taek;Lee, Han-Woong;Kang, Byeong-Cheol
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.302-310
    • /
    • 2018
  • CD47 (integrin-associated protein), a multi-spanning transmembrane protein expressed in all cells including red blood cells (RBCs) and leukocytes, interacts with signal regulatory protein ${\alpha}$ ($SIRP{\alpha}$) on macrophages and thereby inhibits phagocytosis of RBCs. Recently, we generated a novel C57BL/6J CD47 knockout ($CD47^{-/-}$ hereafter) mouse line by employing a CRISPR/Cas9 system at Center for Mouse Models of Human Disease, and here report their hematological phenotypes. On monitoring their birth and development, $CD47^{-/-}$ mice were born viable with a natural male-to-female sex ratio and normally developed from birth through puberty to adulthood without noticeable changes in growth, food/water intake compared to their age and sex-matched wild-type littermates up to 26 weeks. Hematological analysis revealed a mild but significant reduction of RBC counts and hemoglobin in 16 week-old male $CD47^{-/-}$ mice which were aggravated at the age of 26 weeks with increased reticulocyte counts and mean corpuscular volume (MCV), suggesting hemolytic anemia. Interestingly, anemia in female $CD47^{-/-}$ mice became evident at 26 weeks, but splenomegaly was identified in both genders of $CD47^{-/-}$ mice from the age of 16 weeks, consistent with development of hemolytic anemia. Additionally, helper and cytotoxic T cell populations were considerably reduced in the spleen, but not in thymus, of $CD47^{-/-}$ mice, suggesting a crucial role of CD47 in proliferation of T cells. Collectively, these findings indicate that our $CD47^{-/-}$ mice have progressive hemolytic anemia and splenic depletion of mature T cell populations and therefore may be useful as an in vivo model to study the function of CD47.

Clinical Characteristics of Korean Patients with Lung Cancer Who Have Programmed Death-Ligand 1 Expression

  • Park, Ha-Young;Oh, In-Jae;Kho, Bo Gun;Kim, Tae-Ok;Shin, Hong-Joon;Park, Cheol Kyu;Kwon, Yong-Soo;Kim, Yu-Il;Lim, Sung-Chul;Kim, Young-Chul;Choi, Yoo-Duk
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권3호
    • /
    • pp.227-233
    • /
    • 2019
  • Background: Programmed death-ligand 1 (PD-L1), a transmembrane protein, binds to the programmed death-1 (PD-1) receptor, and anti-PD-1 therapy enables immune responses against tumors. This study aimed to assess clinical characteristics of PD-L1 expression using immunohistochemistry among Korean patients with lung cancer. Methods: We retrospectively reviewed the data of patients with pathologically proven lung cancer from a single institution. PD-L1 expression determined by Tumor Proportion Score (TPS) was detected using 22C3 pharmDx (Agilent Technologies) and SP263 (Ventana Medical Systems) assays. Results: From July 2016 to July 2017, 267 patients were enrolled. The main histologic type was adenocarcinoma (69.3%). Most participants were smokers (67.4%) and had clinical stage IV disease (60.7%). In total, 116 (42%) and 58 (21%) patients had TPS ${\geq}1%$ and ${\geq}50%$, respectively. The patients were significantly older in TPS ${\geq}1%$ group than in TPS <1% group ($64.83{\pm}9.38years$ vs. $61.73{\pm}10.78years$, p=0.014), not in TPS ${\geq}50%$ cutoff value ($64.69{\pm}9.39$ vs. $62.36{\pm}10.51$, p=0.178). Regarding histologic grade, higher proportions of poorly differentiated tumor were observed in the TPS ${\geq}1%$ (40.8% vs. 25.8%, p=0.020) and TPS ${\geq}50%$ groups (53.2% vs. 27.2%, p=0.004). Among 34 patients examined with 22C3 and SP263 assays, 27 had positive results in both assays, with a cutoff of TPS ${\geq}1%$ (r=0.826; 95% confidence interval, 0.736-0.916). Conclusion: PD-L1 expression, defined as TPS ${\geq}1%$, was related to older age and poorly differentiated histology. There was a similar distribution of PD-L1 expression in both 22C3 and SP263 results.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

형질전환 초파리를 이용한 Mdr49A 유전자의 살충제 교차저항성 기능 구명 (Molecular Mechanism of ABC Transporter Mdr49A Associated with a Positive Cross-Resistance in Transgenic Drosophila)

  • 성건묵
    • 한국응용곤충학회지
    • /
    • 제59권4호
    • /
    • pp.341-348
    • /
    • 2020
  • ATP-binding cassette (ABC) transporter는 다양한 기질을 세포 밖과 세포 안으로 수송하는 대표적인 수송단백질이다. 곤충에서 ABC transporter는 살충제에 대한 저항성을 발달시키는 중요한 역할을 한다. 현재까지 모델곤충인 초파리를 대상으로 ABC transporter의 살충제 교차저항성에 관한 연구는 많이 수행되어오지 않았다. 본 연구에서는 ABC transporter에 속하는 Mdr49A 유전자가 여섯 종류의 살충제에 보이는 교차저항성 기작을 형질전환 초파리를 이용하여 구명하였다. 초파리 91-R과 91-C 계통은 공통된 조상으로부터 유래되었으며 91-R은 60년 이상 DDT에 노출되었지만 91-C는 어떠한 살충제에도 노출되지 않고 유지되어 왔다. 91-R 계통의 MDR49A 단백질에서 유래된 3개의 아미노산 돌연변이를 형질전환 초파리에 과발현 시켰을 때 carbofuran에 대해서 2.0~6.7배 그리고 permethrin에 대해서 2.5~10.5배의 교차저항성을 나타낸 반면 다른 약제, abamectin, imidacloprid, methoxychlor, prothiofos에 대해서는 어떠한 교차저항성도 나타내지 않았다. 이상의 결과는 Mdr49A 유전자의 과발현과 더불어 3개의 아미노산 돌연변이는 두 개 약제, carbofuran과 permethrin에 대해 교차저항성 기능을 한다고 제시하고 있다.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.