DOI QR코드

DOI QR Code

Molecular Mechanism of ABC Transporter Mdr49A Associated with a Positive Cross-Resistance in Transgenic Drosophila

형질전환 초파리를 이용한 Mdr49A 유전자의 살충제 교차저항성 기능 구명

  • Seong, Keon Mook (Department of Applied Biology, College of Ecology and Environment, Kyungpook National University) ;
  • Pittendrigh, Barry R. (Department of Entomology, Michigan State University)
  • 성건묵 (경북대학교 생태환경대학 생물응용전공) ;
  • Received : 2020.08.14
  • Accepted : 2020.10.20
  • Published : 2020.12.01

Abstract

The ATP-binding cassette (ABC) transporter superfamily represents the largest transmembrane protein that transports a variety of substrates across extra- and intra-cellular membranes. In insects, the ABC transporter proteins play crucial roles in insecticide resistance. To date, no studies have investigated the involvement of ABC transporter gene for cross-resistance to insecticide chemistries. Here, we studied such possible mechanisms against six conventional insecticides using transgenic Drosophila melanogaster strains carrying Mdr49 transcript variant A. For the 91-R and 91-C strains of Drosophila melanogaster, although they have a common origin, 91-R has been intensely selected with DDT for over 60 years, while 91-C has received no insecticide selection. Our transgenic analyses showed that overexpression of 91-R-MDR49 transcript variant A along with three amino acid variations can yield a relatively low degree of cross-resistance to carbofuran (2.0~6.7-fold) and permethrin (2.5~10.5-fold) but did not show cross-resistance to abamectin, imidacloprid, methoxychlor, and prothiofos as compared to the Gal4-driver control strain without transgene expression. These results indicate that the overexpression of Mdr49A in itself leads to a cross-resistance and three amino acid changes have additional effects on positive cross-resistance to carbofuran and permethrin.

ATP-binding cassette (ABC) transporter는 다양한 기질을 세포 밖과 세포 안으로 수송하는 대표적인 수송단백질이다. 곤충에서 ABC transporter는 살충제에 대한 저항성을 발달시키는 중요한 역할을 한다. 현재까지 모델곤충인 초파리를 대상으로 ABC transporter의 살충제 교차저항성에 관한 연구는 많이 수행되어오지 않았다. 본 연구에서는 ABC transporter에 속하는 Mdr49A 유전자가 여섯 종류의 살충제에 보이는 교차저항성 기작을 형질전환 초파리를 이용하여 구명하였다. 초파리 91-R과 91-C 계통은 공통된 조상으로부터 유래되었으며 91-R은 60년 이상 DDT에 노출되었지만 91-C는 어떠한 살충제에도 노출되지 않고 유지되어 왔다. 91-R 계통의 MDR49A 단백질에서 유래된 3개의 아미노산 돌연변이를 형질전환 초파리에 과발현 시켰을 때 carbofuran에 대해서 2.0~6.7배 그리고 permethrin에 대해서 2.5~10.5배의 교차저항성을 나타낸 반면 다른 약제, abamectin, imidacloprid, methoxychlor, prothiofos에 대해서는 어떠한 교차저항성도 나타내지 않았다. 이상의 결과는 Mdr49A 유전자의 과발현과 더불어 3개의 아미노산 돌연변이는 두 개 약제, carbofuran과 permethrin에 대해 교차저항성 기능을 한다고 제시하고 있다.

Keywords

References

  1. Aller, S.G., Yu, J., Ward, A., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P.M., Trinh, Y.T., Zhang, Q., Urbatsch, I., Chang, G., 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718-1722. https://doi.org/10.1126/science.1168750
  2. Atsumi, S., Miyamoto, K., Yamamoto, K., Narukawa, J., Kawai, S., Sezutsu, H., Kobayashi, I., Uchino, K., Tamura, T., Mita, K., Kadono-Okuda, K., Wada, S., Kanda, K., Goldsmith, M.R., Noda, H., 2012. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 109, E1591-1598. https://doi.org/10.1073/pnas.1120698109
  3. Bolhuis, H., Molenaar, D., Poelarends, G., van Veen, H.W., Poolman, B., Driessen, A.J., Konings, W.N., 1994. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J. Bacteriol. 176, 6957-6964. https://doi.org/10.1128/JB.176.22.6957-6964.1994
  4. Broehan, G., Kroeger, T., Lorenzen, M., Merzendorfer, H., 2013. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 14, 6. https://doi.org/10.1186/1471-2164-14-6
  5. Brown, A.W., 1959. Insecticide resistance as a world problem. Can. J. Biochem. Physiol. 37, 1091-1097. https://doi.org/10.1139/o59-119
  6. Buss, D.S., Callaghan, A., 2008. Interaction of pesticides with p-glycoprotein and other ABC proteins: A survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic. Biochem. Physiol. 90, 141-153. https://doi.org/10.1016/j.pestbp.2007.12.001
  7. Epis, S., Porretta, D., Mastrantonio, V., Urbanelli, S., Sassera, D., De Marco, L., Mereghetti, V., Montagna, M., Ricci, I., Favia, G., Bandi, C., 2014a. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi. Sci. Rep. 4, 7435. https://doi.org/10.1038/srep07435
  8. Epis, S., Porretta, D., Mastrantonio, V., Comandatore, F., Sassera, D., Rossi, P., Cafarchia, C., Otranto, D., Favia, G., Genchi, C., Bandi, C., Urbanelli, S., 2014b. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit. Vectors. 7, 349. https://doi.org/10.1186/1756-3305-7-349
  9. Feyereisen, R., 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44, 507-533. https://doi.org/10.1146/annurev.ento.44.1.507
  10. Finney, D.J., 1964. Probit analysis: Statistical treatment of the sigmoid curve. Cambridge University Press, London.
  11. Gellatly, K.J., Yoon, K.S., Doherty, J.J., Sun, W., Pittendrigh, B.R., Clark, J.M., 2015. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster. Pestic. Biochem. Physiol. 121, 107-115. https://doi.org/10.1016/j.pestbp.2015.01.001
  12. Hull, J.J., Chaney, K., Geib, S.M., Fabrick, J.A., Brent, C.S., Walsh, D., Lavine, L.C., 2014. Transcriptome-based identification of ABC transporters in the western tarnished plant bug Lygus hesperus. PLoS One 9, e113046. https://doi.org/10.1371/journal.pone.0113046
  13. James, C.E., Davey, M.W., 2009. Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans. Int. J. Parasitol. 39, 213-220. https://doi.org/10.1016/j.ijpara.2008.06.009
  14. Lee, S.H., Kang, J.S., Min, J.S., Yoon, K.S., Strycharz, J.P., Johnson, R., Mittapalli, O., Margam, V.M., Sun, W., Li, H.M., Xie, J., Wu, J., Kirkness, E.F., Berenbaum, M.R., Pittendrigh, B. R., Clark, J.M., 2010. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism. Insect Mol. Biol. 19, 599-615. https://doi.org/10.1111/j.1365-2583.2010.01024.x
  15. Leprohon, P., Legare, D., Ouellette, M., 2011. ABC transporters involved in drug resistance in human parasites. Essays Biochem. 50, 121-144. https://doi.org/10.1042/bse0500121
  16. Li, X., Schuler, M.A., Berenbaum, M.R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231-253. https://doi.org/10.1146/annurev.ento.51.110104.151104
  17. Livak, K.J., Schmittgen, T.D., 2011 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(t) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  18. Miyo, T., Akai, S., Oguma, Y., 2000. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster : Empirical observations of fitness costs of insecticide resistance. Genes Genet. Syst. 75, 97-104. https://doi.org/10.1266/ggs.75.97
  19. Ole Sangba, M.L., Sidick, A., Govoetchan, R., Dide-Agossou, C., Osse, R.A., Akogbeto, M., Ndiath, M.O., 2017. Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui, Central African Republic. Parasit. Vectors 10, 23. https://doi.org/10.1186/s13071-016-1965-8
  20. Pedra, J.H., McIntyre, L.M., Scharf, M.E., Pittendrigh, B.R., 2004. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc. Natl. Acad. Sci. U. S. A. 101, 7034-7039. https://doi.org/10.1073/pnas.0400580101
  21. Pittendrigh, B.R., Aronstein, K., Zinkovsky, E., Andreev, O., Campbell, B., Daly, J., Trowell, S., Ffrench-Constant, R.H., 1997. Cytochrome P450 genes from Helicoverpa armigera : Expression in a pyrethroid-susceptible and -resistant strain. Insect Biochem. Mol. Biol. 27, 507-512. https://doi.org/10.1016/S0965-1748(97)00025-8
  22. Pohl, P.C., Klafke, G.M., Junior, J.R., Martins, J.R., da Silva Vaz Jr, I., Masuda, A., 2012. ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitol. Res. 111, 2345-2351. https://doi.org/10.1007/s00436-012-3089-1
  23. Rees, D.C., Johnson, E., Lewinson, O., 2009. ABC transporters: the power to change. Nat. Rev. Mol. Cell. Biol. 10, 218-227. https://doi.org/10.1038/nrm2646
  24. Seong, K.M., Sun, W., Clark, J.M., Pittendrigh, B.R., 2016. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila. Sci. Rep. 6, 23355. https://doi.org/10.1038/srep23355
  25. Silva, A.X., Jander, G., Samaniego, H., Ramsey, J.S., Figueroa, C.C., 2012. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS One 7, e36366. https://doi.org/10.1371/journal.pone.0036366
  26. Vontas, J.G., Small, G.J., Hemingway, J., 2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J. 357, 65-72. https://doi.org/10.1042/bj3570065
  27. Wilson, T.G., Cain, J.W., 1997. Resistance to the insecticides lufenuron and propoxur in natural populations of Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 90, 1131-1136. https://doi.org/10.1093/jee/90.5.1131
  28. Zhu, F., Gujar, H., Gordon, J.R., Haynes, K.F., Potter, M.F., Palli, S.R., 2013. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 3, 1456. https://doi.org/10.1038/srep01456