• Title/Summary/Keyword: translational spring.

Search Result 68, Processing Time 0.023 seconds

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

Theoretical Study on The Stability of the Cantilever Beam Subjected to a Follower Force (종동력을 받는 외팔보의 안정성에 관한 이론적 연구)

  • 윤한익;손종동;김현수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1998
  • On the stability of the cantilever beam subjected to a follower force at the free end, the influences of the translational spring and the moment of inertia of a tip mass at the free end have been studied by numerical methods. The centroid of a tip mass is offset from the free end of a Beam and is located along its extended axis to vary the value of moment of inertia of a tip mass. It is proved that as the constants of a spring supporting the free end are augmented, the critical flutter loads of the above system decrease, whereas they increase without a tip mass.

  • PDF

Displacement Characteristics of a Parallel Leaf Spring Mechanism with Large-Deflective Elastic Hinges for Optical Mount

  • Kim, Kwang;Mikio Horie;Teruya Sugihara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.484-489
    • /
    • 1998
  • In this paper, we examine the displacement characteristics of the parallel leaf spring mechanism with large-deflective elastic hinges, and the validity of this mechanism as a translational and rotational mechanism is confirmed with multi-input system. This study is focused on the linear driving force as an input force, which is applied to the large-deflective elastic mechanism, and the displacement characteristics are discussed with theoretically and experimentally. The motions of this mechanism due to large-deflective hinges are changed by the position of loading force regardless of a single driving force. The numbers of degree of freedom are increased with the hinges, and we can be used to a multiple driving force in order to obtain many types of Output.

  • PDF

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

A Study on the Contour Design of the Hinge Mechanism for a Mobile Phone Driven by Continuous Torques (연속적인 회전력으로 작동하는 휴대폰 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-keun;Lee, Soo Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • A total stroke of an opening or closing motion of a hinge mechanism for a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a torque to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the hinge mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. In this study, we have developed an algorithm to design a hinge mechanism to be operated by an arbitrary continuous torque in the first portion of the total stroke. Consequently, we can design hinge mechanisms that satisfy various demands of consumers. A pair of contours installed in the mechanism plays an important role. It transforms the folder's rotational motion into translation to compress the coil spring in the first portion; on the other hand, it transforms translational motion into the folder's rotation in the last portion. Using this algorithm we have designed the pair of the contour curves operated by an arbitrary continuous torque.

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Structural Behavior Analysis of System Supports according to Boundary Condition of Joints between Vertical and Horizontal Members (시스템 동바리의 수직재와 수평재 연결부 경계조건에 따른 거동 분석)

  • Kim, Gyeoung Yun;Won, Jeong-Hun;Kim, Sang-Hyo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • This study examined the effect of rotational stiffness of joints between vertical and horizontal members in system supports. In order to prevent repeated disasters of system supports, it is important to examine the accurate behavior of system supports. Among various factors affecting the complex behavior of system supports, this study focused on the stiffness of joints between vertical and horizontal members. The considered joint was modelled by a rotational spring, but the translational displacements were fixed. The stiffness of rotational spring was calculated by utilizing the usable experimental data. In addition, the hinge connection condition, which is generally considered in design and only restrict the translational displacements, was modelled to compare the results. The case with the rotational stiffness in joints showed 3.5 times buckling loads compared to the case without the rotational stiffness. Thus, the structural behavior of the vertical member in system supports was similar to the vertical member with the fixed condition. For the combined stresses of vertical members, the combined stress ratios were reduced 5~6% by considering the rotational stiffness of connecting parts. However, for the horizontal member where showed relatively small stress range, the stresses were increased 2.3~7.6 times by considering the rotational stiffness in connecting parts.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.