• Title/Summary/Keyword: transition temperature

Search Result 2,879, Processing Time 0.032 seconds

Fabrication, temperature-dependent local structural and electrical properties of VO2 thin films

  • Jin, Zhenlan;Hwang, In-Hui;Park, Chang-In;Han, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.169.2-169.2
    • /
    • 2015
  • $VO_2$ is a well-known a metal-to-insulator-transition (MIT) material, accompanied with a first order structural phase transition near room temperature. Because of the structural phase transition and the MIT occur near a same temperature, there is an ongoing argument whether the MIT is induced by the structural phase transition. $VO_2$ exhibits a relatively weak anti-oxidization ability and can be oxidized to higher-valence oxides (e.g., $V_4$ $O_7$ or $V_2$ $O_5$) when annealed at a high temperature in an oxygen-rich atmosphere. We fabricated $VO_2$ films on $Al_2$ $O_3$ (0001) substrates using a DC magnetron sputtering deposition process with carefully control the $O_2$ percentage in an atmosphere. X-ray diffraction measurements from the films showed only (0l0) peaks with no extra peaks, indicating b-oriented films. The temperature-dependent local structural properties of $VO_2$ films were investigated by using in-situ X-ray absorption fine structure (XAFS) measurements at the V K edge. XAFS revealed that the structural phase transition was occurred nearly $70^{\circ}C$ for heating process and reproducible. Resistance measurements as a function of temperature (R-T) demonstrated that the resistance of $VO_2$ films was changed by a factor of 4 near $75^{\circ}C$ which was higher than $68^{\circ}C$ reported from a $VO_2$ bulk. We will discuss the MIT of $VO_2$ films, comparing with the local structural properties determined by XAFS measurements.

  • PDF

Synchrotron SAXS Study on the Micro-Phase Separation Kinetics of Segmented Block Copolymer

  • Lee, Han-Sup;Yoo, So-Ra;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.98-107
    • /
    • 2001
  • The phase transition behavior isothermal micro-phase separation kinetics of polyester-based thermoplastic elastomer were studied using the synchrotron X-ray scattering(SAXS) method. The structural changes occurring during heating period were investigated by determining the changes of the one-dimensional correlation function, interfacial thickness and Porod constant. Based on the abrupt increases of the domain spacing and interfacial thickness, a major structural change occurring well below the melting transition temperature is suggested. Those changes are explained in terms of melting of the thermodynamically unstable hard domains or/and the interdiffusion of the hard and soft segments in the interfacial regions. SAXS profile changes during the micro-phase separation process were also clearly observed at various temperatures and the separation rate was found to be sensitively affected by the temperature. The peak position of maximum scattering intensity stayed constant during the entire course of the phase separation process. The scattering data during the isothermal phase separation process was interpreted with the Cahn-Hilliard diffusion equation. The experimental data obtained during the early stage of the phase separation seems to satisfy the Cahn-Hilliard spinodal mechanism. The transition temperature obtained from the extrapolation of the diffusion coefficient to zero value turned out to be about 147$\pm$$2^{\circ}$, which is close to the order-disorder transition temperature obtained from the Porod analysis. The transition temperature was also estimated from the inveriant growth rate. By extrapolating the inveriant growth rate to zero, a transition temperature of about 145$\pm$$\pm$$2^{\circ}$ was obtained.

  • PDF

The Effects of Calcium and Phenothiazine Derivatives on the Thermotropic Phase Transition of Acidic Phospholipid Bilayers (산성 인지질 이중층의 열적 상전이에 미치는 칼슘과 페노치아진 유도체의 영향)

  • Kim, Nam-Hong;Roh, Sung-Bae
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.77-82
    • /
    • 1990
  • The effects of phenothiazine derivatives and calcium on the thermotropic phase transition of bilayers in dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidic acid (DPPA) liposomes were investigated with differential scanning calorimeter (DSC). Bilayers underwent an abrupt organizational changes at a characteristic temperature when heated. Such temperature-dependent transition was particularly striking and sharp in the bilayers prepared from pure phospholipids. The ability of phenothiazine derivatives to modify the phase transition of phospholipids liposomes was measured by a broadening of the phase transition profile, that transition began to appear at lower temperature than which occurs in untreated liposomes. Calcium ion caused a large upward shift in the transition temperature of DPPC:DPPA (34:66mol%) liposomes. When the liposomes were first incubated with calcium ion followed by phenothiazine derivatives, disappearance of the broad curve centering at $73^{\circ}C$ indicated displacement of calcium ion by phenothiazine derivatives at the anionic site. It is supposed that calcium ion and phenothiazine derivatives might compete with each other on the head group of acidic phospholipid.

  • PDF

A study on hysteresis and temperature properties of VDF/TrFe copolymer (VDF/TrFE 공중합체의 히스테리시스 및 온도특성)

  • 방태찬;김종경;강대하
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.156-165
    • /
    • 1997
  • D-E hysteresis loops have been measured for the 65/35 mole % copolymer of vinylidene fluoride and trifluoroethylene over wide temperature range. The remanent polarization and the coercive field at room temperature were estimated to be 75 mC/m$^{2}$ and 55 MV/m respectively. D-E hysteresis loops were observed even below the glass transition temperature(-20.deg. C) and the remanent polarization and the coercive field were larger, as the temperature lower. It seems that the remanent polarization and the coercive field depend on the amorphous region as well as crystalline region in this copolymer. And the ferroelectric-to-paraelectric phase transition was observed at 90.deg. C on heating and 80'C on cooling. Double hysteresis loops were observed at the temperature(85.deg. C) of paraelectric phase.

  • PDF

Relationship Between Coefficient of Thermal Expansion and Glass Transition Temperature in Phosphate Glasses (인산염유리의 선팽창계수와 유리전이온도의 관계)

  • 전재삼;차명룡;정병해;김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1127-1131
    • /
    • 2003
  • Phosphate glasses known for low melting temperature glasses in electrical parts has been recently used in wide area with modification of thermal properties using alkali oxides. It is our purpose to find a correlation between thermal expansion coefficient, glass transition temperature and melting temperature through investigating thermal properties in P$_2$O$\sub$5/-SnO-ZnO-SiO$_2$/B$_2$O$_3$. As a result, the product of thermal expansion coefficient and the glass transition temperature in the glasses is found to be a constant value would be a unique value for knowing one of thermal properties.

Effects of Titanium Impurity on the Crystallographic and Spin-rotation Transitions of FeS

  • Nam, Hyo-Duk;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2011
  • The effects of titanium ions on the crystallographic and spin-rotation transitions in iron sulfide have been examined by M$\"{o}$ssbauer spectroscopy in the temperature range of 78 to 600 K. It is noted that the titanium impurity of $Ti_{0.02}Fe_{0.98}S$ affects both the crystallographic and spin-rotation transitions of the iron sulfide. 2% impurity of $Ti^{2+}$ in FeS causes the increase in the difference between the spin rotation and ${\alpha}$ transition temperature by as much as 10 K compared with that for FeS. Both 1c and 2c structures coexist in the range between the ${\alpha}$ transition temperature and approximately 26 K, with a smaller hyperfine field corresponding to the 1c structure. The spin-rotation temperature for $Ti_{0.02}Fe_{0.98}S$ was measured to be 365 K, which is 10 K lower than the ${\alpha}$ transition temperature. By the 2% impurity of $Ti^{2+}$ in FeS the N$\'{e}$el temperature appreciably is not affected.

Syntheses of Novel Liquid Crystalline Compounds with Partially Fluorinated Side Chains

  • Eom, Yong Seop;Kim, Yong Bae;Kim, Seong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.441-445
    • /
    • 2000
  • A new series of three ring type liquid crystalline compounds containing partially fluorinated alkenyl or alkyl side chains together with fluorine substituted cyclohexylbiphenyls were designed and synthesized in this study. The structures of synthe sized compounds were established by 1 H, 13 C and 19 F NMR spectroscopy. The phase transition temperatures of fluorinated liquid crystalline compounds were determined by cross-polarizing mi-croscopy equipped withhot stage. All compounds were found to have nematic liquid crystalline phase with rel-atively low phase transition temperature and wide liquid crystalline temperature range. The dependence of phase transition temperatures on the chainlength falls into three categories; (a) decreasing transition tempera-tures for 4-fluoro-4'-[4-fluoro-4-(1-fluoroalkyl)cyclohexyl]biphenyl (15) series, (b) higher transition tempera-tures for odd numbered chains for 4-fluoro-4'-[4-fluoro-4-(1-fluoroalk-1-enyl)cyclohexyl]biphenyl (14) series, (c) higher transition temperatures for even numbered chains for 4-[4-(1,2-difluoroalk-1-enyl)-4-fluorocyclo-hexyl]-4'-fluorobiphenyl (16) series.

Emulsion Inversion and Emulsion Transition (에멀젼 변환과 에멀젼 전이)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • It has been 40 years since emulsion inversion was observed. Emulsion inversion is a phenomenon in which O/W emulsion inverts to W/O emulsion or vice versa. In other words, the dispersed and continuous phase of an emulsion is reversed after emulsion inversion takes place. For three-phase emulsions, not only emulsion inversion but also emulsion transition has been observed. In emulsion transition the continuous phase of an emulsion remains unchanged, but the dispersed emulsion drops, which is basically a two-phase emulsion, experience emulsion inversion at a certain temperature. Such temperature is called the emulsion transition temperature. Emulsion transition was a product of theoretical speculation and was experimentally observed for a couple of ternary amphiphile/oil/water systems. This phenomenon is a novel one, which has been unreported to date. In this article emulsion inversion and emulsion transition are compared and discussed.

Possible Role of Disorder on Magnetostructural Transition in La1-xBaxMnO3

  • Kim, N.G.;Jung, J.H.
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2007
  • Magnetic field induced structural transition has been systematically investigated for $La_{1-x}Ba_xMnO_3$ with the fine control of carrier doping $(0.15{\leq}x{\leq}0.20)$. Application of a magnetic field results in the suppression of the rhombohedral-orthorhombic transition temperature $(T_s)$ and the increase of insulator-metal transition temperature $(T_{MI})$. Near x = 0.17, where $T_S$ is similar to $T_{MI}$ at zero magnetic field, we found that the $T_S$ smoothly decreased with magnetic field even though it intersected the $T_{MI}$ near 3 T. Also, the magnetostructural phase diagram obtained from the temperature sweep and from the magnetic field sweep is not significantly modified. By comparing the magnetostructural transition in $La_{1-x}Sr_xMnO_3$, we have suggested that the large disorder originated from ionic size differences between La and Ba may weaken the sensitivity of the kinetic energy of $e_g$ electrons on the degree of lattice distortion in $La_{1-x}Ba_xMnO_3$.

Molecular Dynamics Study on the Structural Phase Transition of Crystalline Silver Iodide

  • Jun Sik Lee;Mee Kyung Song;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.490-494
    • /
    • 1991
  • The ${\beta} to {\alpha}$ phase transition in silver iodide is studied with the (N, V, E) and (N, P, T) molecular dynamics (MD) method. In experiments, the phase transition temperature is 420 K. Upon heating of ${\beta}$ form, the iodine ions undergo hcp to bcc transformation and silver ions become mobile. MD simulations for the ${\beta}$ and ${\alpha}$ phases are carried out at several temperatures and the radial distribution functions (rdf) are obtained at those temperatures in the (N, V, E) ensemble. But the phase transition is not found in our calculation. Next the phase transition is studied with the (N, P, T) MD and we find some evidences of phase transition. At 3 Kbars and 2 Kbars the phase transition temperatu re is about 300 K. For 3.55 Kbars, the phase transition is higher (420 K) than the low pressure case. The phase transition temperature is somewhat dependent on the pressure in our calculations.