DOI QR코드

DOI QR Code

Possible Role of Disorder on Magnetostructural Transition in La1-xBaxMnO3

  • Kim, N.G. (Department of Physics, Inha University) ;
  • Jung, J.H. (Department of Physics, Inha University)
  • Published : 2007.09.30

Abstract

Magnetic field induced structural transition has been systematically investigated for $La_{1-x}Ba_xMnO_3$ with the fine control of carrier doping $(0.15{\leq}x{\leq}0.20)$. Application of a magnetic field results in the suppression of the rhombohedral-orthorhombic transition temperature $(T_s)$ and the increase of insulator-metal transition temperature $(T_{MI})$. Near x = 0.17, where $T_S$ is similar to $T_{MI}$ at zero magnetic field, we found that the $T_S$ smoothly decreased with magnetic field even though it intersected the $T_{MI}$ near 3 T. Also, the magnetostructural phase diagram obtained from the temperature sweep and from the magnetic field sweep is not significantly modified. By comparing the magnetostructural transition in $La_{1-x}Sr_xMnO_3$, we have suggested that the large disorder originated from ionic size differences between La and Ba may weaken the sensitivity of the kinetic energy of $e_g$ electrons on the degree of lattice distortion in $La_{1-x}Ba_xMnO_3$.

Keywords

References

  1. For example, Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach Science Publishers, London, 2000)
  2. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001) and references therein
  3. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955) https://doi.org/10.1103/PhysRev.118.955
  4. P.-G. de Gennes, Phys. Rev. 118, 141 (1960)
  5. Y. Tokura and N. Nagaosa, Science 288, 462 (2000)
  6. A. J. Millis, Nature (London) 392, 147 (1998)
  7. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999)
  8. A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, and Y. Tokura, Nature (London) 373, 407 (1995)
  9. A. Asamitsu, Y. Moritomo, R. Kumai, Y. Tomioka, and Y. Tokura, Phys. Rev. B 54, 1716 (1996)
  10. V. E. Arkhipov, N. G. Bebenin, V. P. Dyakina, V. S. Gaviko, A. V. Korolev, V. V. Mashkaustan, E. A. Neifeld, R. I. Zainullina, Ya. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B 61, 11 229 (2000)
  11. V. Laukhin, B. Martinez, J. Fontcuberta, and Y. M. Mukovskii, Phys. Rev. B 63, 214 417 (2001) https://doi.org/10.1146/annurev.physiol.63.1.1
  12. Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B 63, 024 421(2000)
  13. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14 103 (1995) https://doi.org/10.1103/PhysRevE.51.995
  14. P. Mandal and B. Ghosh, Phys. Rev. B 68, 014422 (2003)
  15. Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B 56, 12190 (1997) https://doi.org/10.1103/PhysRevB.56.997
  16. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B 54, R15 622 (1996); ibid. 58, 2426 (1998)
  17. The disorder can be quantitatively obtained by the variance, i.e., ${\sigma}^2={\Sigma}y_iR_{i}^{2}}-{^2}$, Where $y_i$, $R_i$, and $R_A$ represent the fractional occupancies, ionic radii $(La^{3+}=1.22 {\AA}, Sr^{2+}=1.31 {\AA}, Ba^{2+}=1.47 {\AA})$, and mean radius of R and A ions, respectively