• Title/Summary/Keyword: transition density function

Search Result 84, Processing Time 0.026 seconds

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Determination of the Distribution of the Preisach Density Function With Optimization Algorithm

  • Hong Sun-Ki;Koh Chang Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.258-261
    • /
    • 2005
  • The Preisach model needs a distribution function or Everett function to simulate the hysteresis phenomena. To obtain these functions, many experimental data obtained from the first order transition curves are usually required. In this paper, a simple procedure to determine the Preisach density function using the Gaussian distribution function and genetic algorithm is proposed. The Preisach density function for the interaction field axis is known to have Gaussian distribution. To determine the density and distribution, genetic algorithm is adopted to decide the Gaussian parameters. With this method, just basic data like the initial magnetization curve or saturation curves are enough to get the agreeable density function. The results are compared with experimental data and we got good agreements comparing the simulation results with the experiment ones.

A simple analysis on the abnormal behavior of the argon metastable density in an inductively coupled Ar plasma

  • Park, Min;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.438-438
    • /
    • 2010
  • The abnormal behavior of the argon metastable density during the E-H mode transition in argon ICP discharge was investigated. Lots of investigations including global models expected that during and after the mode transition of ICP discharge, the density of metastable increases with applied rf power (i.e. electron density). However, recent direct measurement of metastable density revealed that the metastable density of argon decreases with the applied power during and after the mode transition. This result may not be explained by the previous global model which is based on the assumption of the Maxwellian electron energy distribution function (EEDF). In this paper, to explain this abnormal behavior with simple manners, a simple global model taking account of the effect of the non-Maxwellian EEDFs incorporating into a set of coupled rate equations is proposed. The result showed that the calculated metastable density taking account of non-Maxwellian EEDF and its evolution during the transition has an abnormal behavior with electron density and is in good agreement with the previous measurement results, indicating the close coupling of electron kinetics and the behavior of metastable density. The proposed simple model is expected to provide qualitative kinetic insight to understand the behavior of the metastable density in various plasma discharges which typically exhibit non-Maxwellian distribution.

  • PDF

A Study for the Formulation of the Preisach Distribution Function (프라이자흐 분포함수의 정식화에 관한 연구)

  • Kim, Hong-Kyu;Lee, Chang-Hwan;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.56-58
    • /
    • 1996
  • The Preisach model needs a density function to simulate the hysteresis phenomena. To obtain this function, many experimental data obtained from the first order transition curves are required to get accurate density function. However, it is difficult to perform this procedure, especially for the hard magnetic materials. In this paper, we compare the density function obtained from the experimental data with that computed from the mathematical function like the Gaussian function, and propose a simple technique to get mathematical equation of the density function or Everett function which is obtained from the initial curve, major and minor loop.

  • PDF

A Study for the Formulation of the Everett Function Using First Order Transition Curves (일차 전이곡선을 이용한 에버렡 함수의 정식화에 관한 연구)

  • Kim, Hong-Kyu;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.3-5
    • /
    • 1996
  • The Preisach model needs density function or Everett function for the sample material to calculate the hysteresis characteristics. To obtain these functions, many experimental data obtained from the first order transition curves are required. However, it is not simple task to measure the curves. In this paper, a simple generalized technique to get the Everett function using saturation hysteresis loop and two first order transition curves is proposed. These three data makes three equations for the proposed Everett function model and we can get three variables by those equations. From the simulation, we got acceptable results.

  • PDF

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

A study on phase transition of Hydrogel: (I)Volume Phase Transition of N-Isopropylacrylamide gel (수화겔의 상전이에 관한 연구: (I)폴리(N-이소프로필아크릴아미드)겔의 부피상전이)

  • Park, Sang-Bo;Min, Seong-Kee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Equilibrium swelling curves of N-isopropyl acrylamide(NIPA) gel and its ionized copolymer gels were obtained as a function of temperature. Discontinuous volume changes of the gels were observed. Phase transition temperature was increased with the ionized counter parts of the gels. Equilibrium swelling of ionized copolymer gel cylinder was found to depend strongly on their diameters. Crosslinking density of NIPA gel was adjusted by increasing N,N'-methylenebisacrylamide(BIS). Phase transition temperature was increased with the crosslinking density.

  • PDF

Flow pattern characteristics in vertical two phase flow by PDF and signals from conductance probe (確率密度函數와 電導 Prode信號에 의한 垂直二相流의 流動樣式特性)

  • Son, Byung-Jin;Kim, In-Suhk;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.814-822
    • /
    • 1986
  • Flow patterns and its transitions in vertical two phase flow of air-water isothermal flow are identified objectively by void output signals and moments computed from the Probability Density Function which is associated with the statistical measurement for time average local void fractions using conductance probe. It has been shown that the probe output signals, PDF distributions and its moments are deterministic criteria of flow pattern and transition classification.

Analytical Formulation for the Everett Function

  • Hong, Sun-Ki;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.105-109
    • /
    • 1997
  • The Preisach model neds a density function or Everett function for the hysterisis operator to simulate the hysteresis phenomena. To obtain the function, many experimental data for the first order transition curves are required. However, it needs so much efforts to measure the curves, especially for the hard magnetic materials. By the way, it is well known that the density function has the Gaussian distribution for the interaction axis on the Preisach plane. In this paper, we propose a simple technique to determine the distribution function or Everett function analytically. The initial magnetization curve is used for the distribution of the Everett function for the coercivity axis. A major, minor loop and the initial curve are used to get the Everett function for the interaction axis using the Gaussian distribution function and acceptable results were obtained.

  • PDF

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.