• Title/Summary/Keyword: transistors

Search Result 1,947, Processing Time 0.029 seconds

A Study on Composition of A Novel Single Phase 3 Level Inverter Circuit (새로운 단상 3전위 인버터회로의 구성에 관한 연구)

  • 이종수;백종현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.51-56
    • /
    • 1995
  • The transistors of single phase 3 level PWM Inverter compose output power transistors and neutral point clamping transistors, which are NPN transistors. Waveforms of driving signals for this are PWM waves for power transistors and period operating waves for neutral point clamping transistors, which signals made W-type modulation from rectangular and sine wave. The output power transistors operate at ON-time complementary and neutral point clamping transistors operate at OFF-time complementary respectively. Therefore, each transistors operate in half period at parallel. Characteristics of this inverter circuit is parallel switching method about series switching method of general inverter. As modulation of 3 level drive signals made from full-wave rectifier of sine wave and rectangular wave, which are level wave about 3 level of complementary transistor inverter. So, this circuit composed complementary operation inverter of NPN transistors only compare with PNP-NPN complementary inverter, which have high power 3 level inverter of complementary operation.

  • PDF

Vertical Type Organic Transistors and Flexible Display Applications

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.168-169
    • /
    • 2007
  • Organic transistors are promising in the future development of active devices for flexible, low-cost and large-area photoelectric devices. However, conventional organic field-effect transistors have lowspeed, low-power, and relatively high operational voltage. Vertical type transistors show high-speed and high-current characteristics and are suitable for driver elements of flexible displays.

  • PDF

Thin-Film Transistor-Based Strain Sensors on Stiffness-Engineered Stretchable Substrates (강성도 국부 변환 신축성 기판 위에 제작된 박막 트랜지스터 기반 변형률 센서)

  • Youngmin Jo;Gyungin Ryu;Sungjune Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.386-390
    • /
    • 2023
  • Stiffness-engineered stretchable substrate technology has been widely used to produce stretchable displays, transistors, and integrated circuits because it is compatible with various flexible electronics technologies. However, the stiffness-engineering technology has never been applied to transistor-based stretchable strain sensors. In this study, we developed thin-film transistor-based strain sensors on stiffness-engineered stretchable substrates. We designed and fabricated strain-sensitive stretchable resistors capable of inducing changes in drain currents of transistors when subjected to stretching forces. The resistors and source electrodes of the transistors were connected in series to integrate the developed stretchable resistors with thin-film transistors on stretchable substrates by printing the resistors after fabricating transistors. The thin-film transistor-based stretchable strain sensors demonstrate feasibility as strain sensors operating under strains of 0%-5%. This strain range can be extended with further investigations. The proposed stiffness-engineering approach will expand the potential for the advancement and manufacturing of innovative stretchable strain sensors.

Downscaling of self-aligned inkjet printed polymer thin film transistors

  • Noh, Yong-Young;Sirringhaus, Henning
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1564-1567
    • /
    • 2008
  • We demonstrate here a self-aligned printing approach that allows downscaling of printed organic thin-film transistors to channel lengths of 100 - 400 nm. A perfected down-scaled polymer transistors (L= 200 nm) showing high transition frequency over 1.5 Mhz were realized with thin polymer dielectrics, controlling contact resistance, and minimizing overlap capacitance via self-aligned gate configuration.

  • PDF

New Dynamic Logic Gate Design Method for Improved TFT Circuit Performance

  • Jeong, Ju-Young;Kim, Jae-Geun
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • We explored a new way of designing dynamic logic gates with low temperature polysilicon thin film transistors to increase the speed. The proposed architecture of logic gates utilizes the structural advantage of smaller junction capacitance of thin film transistors. This method effectively blocks leakage of current through the thin film transistors. Furthermore, the number of transistors used in logic gates is reduced thereby reducing power consumption and chip area. Through HSPICE .simulation, it is confirmed that the circuit speed is also improved in all logic gates designed.

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • Park, Gyeong-Seon;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

Characteristics of RC Circuit with Transistors in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • Cho Pil Joo;Yi Sang Min;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.44-51
    • /
    • 2004
  • In a micro-EDM, it is well known that an RC circuit is suitable as a discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, when the resistance is very low, continuous (or normal) arc discharge occurs, electrode wear increases and machining speed is reduced remarkably. In this paper, an RC circuit with transistors is used in a micro-EDM. Experimental results show that the RC circuit with transistors can cut off a continuous (o. normal) arc discharge effectively if the duty factor and switching period of the transistor are set up optimally. Through experiments with varying charge resistances, it is shown that the RC circuit with transistors has about two times faster machining speed than that of an RC circuit.

High performance ambipolar organic transistors

  • Lee, Mi-Jung;Chen, Zhuoying;Sirringhaus, Henning
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.54.1-54.1
    • /
    • 2012
  • Recent significant development of organic electronics is worthy of notice for its practical application as well as fundamental understandings. Complementary-like logic circuit is a key factor to realize actual operating organic electronic devices since its advantages of low power dissipation, good noise margin and stable operations. In this reason, studies on ambipolar properties of organic materials which can act as either n-type or p-type are getting more attentions. Performances of ambipolar transistors vary a lot along its molecular structures and film properties. When properly fabricated, balanced hole and electron mobilities over 1 cm2/Vs were observed recently. Study of charge transport in ambipolar organic transistors to understand this high performance was carried out through charge modulation spectroscopy.

  • PDF

Electrolyte-gated Transistors for the Next-generation Smart Electronics (차세대 스마트 전자를 위한 전기화학 트랜지스터)

  • Kwon, Hyeok-jin;Kim, Se Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

Applications of Nanowire Transistors for Driving Nanowire LEDs

  • Hamedi-Hagh, Sotoudeh;Park, Dae-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • Operation of liquid crystal displays (LCDs) can be improved by monolithic integration of the pixel transistors with light emitting diodes (LEDs) on a single substrate. Conventional LCDs make use of filters to control the backlighting which reduces the overall efficiency. These LCDs also utilize LEDs in series which impose failure and they require high voltage for operation with a power factor correction. The screen of small hand-held devices can operate from moderate brightness. Therefore, III-V nanowires that are grown along with transistors over Silicon substrates can be utilized. Control of nanowire LEDs with nanowire transistors will significantly lower the cost, increase the efficiency, improve the manufacturing yield and simplify the structure of the small displays that are used in portable devices. The steps to grow nanowires on Silicon substrates are described. The vertical n-type and p-type nanowire transistors with surrounding gate structures are characterized. While biased at 0.5 V, nanowire transistors with minimum radius or channel width have an OFF current which is less than 1pA, an ON current more than 1 ${\mu}A$, a total delay less than 10 ps and a transconductance gain of more than 10 ${\mu}A/V$. The low power and fast switching characteristics of the nanowire transistor make them an ideal choice for the realization of future displays of portable devices with long battery lifetime.