• Title/Summary/Keyword: transient vibration

Search Result 408, Processing Time 0.027 seconds

Abnormal Condition Modeling and Validation of RK4 Multi Axis Rotor System (RK4 회전체 시스템의 이상상태 모델링 및 검증)

  • Kwon, Ki Beom;Han, Jeong Sam;Jeon, ByungChul;Jung, Joonha;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.511-512
    • /
    • 2014
  • In this paper, the finite element modeling of the RK4 rotor kit system (RK4) and then transient analysis, and was compared with the actual experimental results. RK4 manufactured by General Electric for the purpose of education and research. It is modeled by using the ANSYS finite element analysis program commercially available. Considering the rotor abnormal conditions(disc unbalance and shaft rubbing) and the vibration response of the analytical model were compared with experimental results.

  • PDF

Dynamic Behaviors of the Impact Damper and the Accelerated Mass Loading (충격 댐퍼의 동특성과 가속 질량추가 현상에 대한 연구)

  • Wang, Se-Myung;Park, Jong-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.396-401
    • /
    • 2006
  • Dynamic behaviors of the impact damper are studied experimentally and numerically. In order to investigate wide range of excitation frequencies and amplitudes, a simple but high amplifying and bias-free experimental setup is designed. Experiments focused on the harsh operation condition demonstrate Accelerated mass loading which not only deteriorates the performance of the impact damper but also involves the structural resonance which should be avoided for the stability of the system. In the previous studies, instability or deterioration of the performance was reported for the off resonance frequency region. But this paper shows that the performance deterioration and structural resonances can be predicted. Using finite element modeling and analysis, accurate system parameters were derived and used for the numerical modeling employing the conservation of the momentum. Numerical study of the transient responses using 4th-order Runge-Kutta method demonstrates general performance of the system, and shows that accelerated mass loading phenomenon is deeply related with the vibration amplitudes and the mass of the auxiliary system.

  • PDF

Active Micro-Vibration Control of a Structure by Using a Pair of Piezoelectric Actuators (한쌍의 압전형 구동기를 이용한 구조물의 능동 미소 진동 제어)

  • 김미경;지원호;이종원
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1993
  • Active micro-vibration control of a structure, which simulates a stepper device, is performed using a pair of piezolectric actuators. The control aims at reducing the translational and rotational vibrations of the upper plate when the base is subject to seismic disturbance and the upper plate undergoes impulsive transient motion. Using the experimentally determined model, derivative control scheme is adopted so that the damping of the closed-loop system is effectively increased. It is found that the predicted control performance is in good agreement with the experimental results. Finally, the limit cycle phenomenon due to the controller voltage saturation is compared with the simulation.

  • PDF

The Sound Noise and Vibration Analysis for HVDC System Faults (HVDC 시스템의 고장 시 소음 및 진동 분석)

  • Kim, Chan-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.21-28
    • /
    • 2006
  • This paper deals with the HVDC system fault analysis and the sound noise analysis. In this paper, the reasons of the audible noise and vibration were analyzed the fault waveform were analyzed using DTR (Digital Transient Recorder). Finally, using the fault current waveform and the vibration equation, the reason of crack of smoothing reactor support is estimated.

Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller (엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.217-221
    • /
    • 2007
  • In this study, forced vibrations analysis was performed for main wing of small scale WIG vehicle which is equipped two-stroke pusher type propeller engine, in terms of structural. for the frequency response analysis, excitations were assumed by H-mode(Horizontal mode), X-mode(Twisted mode) which is main vibration mode of engine, and for the transient response analysis, excitations were assumed by L-mode(Longitudinal mode) with propeller thrust which is occurred when it revolution.

  • PDF

Mass-estimation Algorithm by Vibration Response Measurement of Dynamic Balance (동적 저울의 진동응답 측정에 의한 질량 추정 알고리즘)

  • 김병삼
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.71-78
    • /
    • 2000
  • Quickness and precision are the two most important requirements for an industrial scale used in production lines. In this paper, a new approach, "Mass-estimation algorithm by vibration-response measurement of dynamic balance", is presented to improve some of drawbacks in conventional scales. The system, consisted of velocity and displacement sensors, spring scale, analog-digital converter and microcomputer, is based on full utilization of dynamic mass measurement of velocity and displacement via microcomputer-assisted real time monitoring. The resulting system, when combined with appropriate mass estimation algorithm software, has shown its effectiveness in terms of two desirable characteristics required.

  • PDF

A Study on Vibration Suppression of 2-Phase HB Linear Stepping Motor with New Exciting Sequence (새로운 여자(勵磁) 시컨스에 의한 2상(相) HB형 Linear Stepping Motor의 진동 억제에 관한 연구)

  • Lee, S.H.;Won, K.S.;Seo, J.W.;Oh, H.S.;Lee, K.H.;Jeon, S.K.;Kang, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.118-120
    • /
    • 1997
  • A Lineal Stepping Motor (LSM) can operate in an open loop control mode similarly to a rotary stepping motor. However, the LSM has a large transient vibration, and it sometimes causes the miss-step. In this paper, a new vibration suppression method using an energy stored in winding inductance and induced voltage of the LPM is proposed.

  • PDF

Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building (표준실험동에서 중량충격음의 방사 특성)

  • Yoo, Seung-Yup;Jeong, Yong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

Active Vibration Control of a Flexible Cantilever Beam Using SMA Actuators (SMA 작동기를 이용한 유연외팔보의 능동진동제어)

  • Choi, S.B.;Cheong, C.C.;Hwang, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.167-174
    • /
    • 1995
  • This paper experimentally demonstrates the feasibility of using shape memory alloy(SMA) actuators in controlling structural vibrations of a flexible cantilevered beam. The dynamic characteristics of the SMA actuator are identified and integrated with the beam dynamics. Three types of control schemes; constant amplitude controller(CAC), proportional amplitude controller (PAC) and sliding mode controller(SMC) are designed. The CAC and PAC are determined on the basis of physical phenomenon of the SMA actuator, while teh SMC is formulated in a mathematical manner. The proposed controllers are implemented and evaluated at various operating condirions by investigating the control level of suppression in transient vibration.

  • PDF

Structural and Dynamic Analysis of Mineral/glass Reinforced Polypropyolene Compound Automotive Engine Cover (Mineral/glass Reinforced Polypropylene Compound 재질 엔진 커버의 구조 및 동적 해석)

  • Kim, Beom-Keun;Kim, Heung-Seob;Kim, Yong-Su;Cho, Gyu-Chul;Jeong, Jae-Kwan
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.63-66
    • /
    • 2007
  • Structural analysis of automotive engine cover under vibration excitation is performed by finite element analysis (FEA) in order to identify the critical area of the structure. Assembly load due to the tightening of the bolts as well as the vibration excitation were considered to describe the actual loading condition. Natural frequencies of the system were extracted considering the damping effect of the structure. Dynamic analysis was performed based on the extracted natural frequency of the system. Experimental modal analysis (EMA) and measurement of strains were performed to verify the results of the analysis. Analysis results correlated closely with the experimental results. Analysis and experiments showed that contribution of the assembly load should not be ignored to predict the structural failure of the engine cover.