• Title/Summary/Keyword: transient time integration

Search Result 92, Processing Time 0.026 seconds

A Transient Response Analysis in the State-space Applying the Average Velocity Concept (평균속도 개념을 적용한 상태공간에서의 과도응답해석)

  • 김병옥;김영철;김영춘;이안성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

Nonlinear Transient Heat Transfer Analysis Based on LANCZOS Coordinates (LANCZOS 알고리즘에 기초한 비선형 트랜지언트 열전달 해석)

  • Im, Chang Kyun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.317-326
    • /
    • 1998
  • This paper describes a reduced finite element formulation for nonlinear transient heat transfer analysis based on Lanczos Algorithm. In the proposed reduced formulation all material nonlinearities of irradiation boundary element are included using the pseudo force method and numerical time integration of the reduced formulation is conducted by Galerkin method. The results of numerical examples demonstrate the applicability and the accuracy of the proposed method for the nonlinear transient heat transfer analysis.

  • PDF

Finite element analysis of transient growth of GaAs by horizontal Bridgman method (수평브릿지만법에 의한 갈륨비소 과도기 성장의 유한요소 해석)

  • 김도현;민병수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.19-31
    • /
    • 1996
  • To invetigate the impurity distribution in GaAs crystal grown by horizontal Bridgman method, we constructd the mathematical model describing heat transfer, mass transfer and fluid flow n transient growth of GaAs. Galerkin finite element method and implicit time integration were used to solve the equations and simulate the transient growth. The concentration distribution is similar to the case of diffusion controlled growth when Gr - 0. With the increase of Gr the concentration profile is distroted and the minimum solute concentration appears near the interface. As solidification prosceeds, interface deflection increases steadily and transverse segregation increases until mixing by flow becomes steady. The axial segregation increases with solidification. But, with high intensity of flow axial segregation becomes steady after short transient. At small and large Gr the result showed a good agreememt with the prediction Smith and Scheil.

  • PDF

Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

  • Liu, Shukui;Papanikolaou, Apostolos D.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

Analysis of the Dynamic Behavior and Characteristics of the CNG Compressor Considering Bearing Characteristics (베어링 특성을 고려한 CNG 압축기의 동적 거동 및 동특성 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.342-349
    • /
    • 2006
  • In this study, a dynamic behavior of rotor-bearing system used in CNG compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for roller bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at eccentric crank-pin part. And, the steady state displacements of the rotor are compared with a variation in stiffness coefficient of roller bearings. Results show that the loci of crankshaft considering unbalance forces and external compression forces are more severe in whirl motion than with only unbalance forces.

Free Vibration Analysis of Thermoelastic Structure (열탄성 구조물의 자유진동 특성)

  • Cho, Hee-Keun;Park, Young-Won;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.201-208
    • /
    • 2000
  • A numerical analysis algorithm for thermally loaded structures has been proposed and compared with the general free vibration approach to determine the characteristics of thermal load effects in vibration structures. The field of numerical inspection includes free vibration analysis, transient heat transfer analysis and thermal stress analysis. The key point of the analysis of thermally loaded structure is the method of parallel time integration between transient heat transfer and free vibration simultaneously. The results of the study demonstrate the computation of the specific total external force vector and stiffness matrix. The proposed analysis method can be applied to both heated and cooled structure vibration analysis.

  • PDF

Dynamic Behavior Analysis of Rotor-Bearing System Under External Forces in Swash Plate Compressor (외부 가진력을 고려한 사판식 압축기 회전축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The dynamic behavior of rotor-bearing system used in swash plate compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for swash plate, disk pulley and bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at swash plate and driving pulley. And, the steady state displacements of the rotor are compared with a variation in unbalance mass. Results show that the loci of rotating shaft considering unbalance forces and external compression forces are more severe in flutter motion than with only unbalance forces.

Finite Element Analysis of Underground Structural Systems Considering Transient Flow (지하수의 천이흐름을 고려한 지하구조계의 유한요소해석)

  • 김문겸;이종우;박성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.103-110
    • /
    • 1996
  • In this paper, behaviour of underground structural systems due to excavation and change of groundwater level is analyzed using finite elements. Equilibrium equations based on the effective pressure theory and transient flow equations considering the groundwater level are derived. Integration equations are derived using Galerkin's approximation and time dependent analysis is employed to compute groundwater level change and pore pressures. This computed pore pressures are employed in equilibrium equations and then finally displacements and stresses are computed. The developed program is applied to analyze the behaviour of ground excavation below the groundwater level. The program is also applied to multi-step excavation at the same model. The results show that the displacements of the ground surface are much influenced by the change of the groundwater level. Therefore, it is concluded that the change of the groundwater level should be considered in order to analyze the behaviour of the underground structural systems accurately

  • PDF

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

Low-velocity impact response of laminated composite plates using a higher order shear deformation theory (고차 전단 변형이론에 의한 복합재료 적층판의 저속 충격응답)

  • Lee, Young-Shin;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1365-1381
    • /
    • 1990
  • A $C^{0}$ continuous displacement finite element method based on a higher-order shear deformation theory is employed in the prediction of the transient response of laminated composite plates subjected to low-velocity impact. A modified contact law was applied to calculate the contact force during impact. The discrete element chosen is a nine-noded quadrilateral with 5 degree-of-freedom per node. The Wilson-.theta. time integration algorithm is used for solving the time dependent equations of the impactor and the central difference method was adopted to perform time integration of the plate. Numerical results, including the contact force history, deflection, and velocity history, are presented. Comparisons of numerical results using a higher order theory and a first-order theory show that using a higher order theory provides more accurate results. Effects of boundary condition, impact velocity, and mass of the impactors are also discussed.d.