• Title/Summary/Keyword: transient time integration

Search Result 92, Processing Time 0.022 seconds

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

The Effect Assessment Method of Control and Protection Systems on Transient Stability of Power Systems

  • Miki, Tetsushi;Sugino, Ryuzaburou;Kono, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.736-740
    • /
    • 2004
  • In order to overcome the problems of simulation methods, the power system transient stability assessment method using critical fault clearing time functions has been developed. Using the above method, this paper has developed the new method which can assess accurately and efficiently the effects of control and protection systems on transient stability which is the most important characteristic to assess in power systems. At first, critical fault clearing time functions CCT(W:load) are defined by taking notice of the fact that transient stability is mainly controlled by fault clearing time and load. Next, the method to be enable to assess accurately and efficiently the effects of control and protection systems on transient stability has been newly developed by using the above functions. Finally, it has been applied to the effect assessment in the occurrence of a three-phase fault in a model power system. Results of application have been clarified its effectiveness.

  • PDF

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF

FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral (시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석)

  • Lee, Sung-Hee;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

Comparative Study on Classical Control and Modern Control via Analysis of Circuit-based Time Response (회로망 기반의 시간응답 해석에 따른 고전제어와 현대제어의 비교 연구)

  • Min, Yong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.575-584
    • /
    • 2017
  • It is suggested the circuit network to analyze the time response of control system. And it is analyzed the interrelation for classical control and modern control by the transfer function and the state equation. Without complicated integration of state transition equation, it is suggested to possible time response by combining the state transition matrix and the transfer function. A source program is coded to display the time response according to the unit-step and the sinusoidal input. Transient response is analyzed in the unit-step input and phase difference between current and voltage is analyzed in sinusoidal input. As writing the suggested contents in transient response or state-space analysis, it is improved the understanding for control engineering and ability for system design.

A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure (쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF