• 제목/요약/키워드: transient solutions

검색결과 195건 처리시간 0.025초

일체형 촉매변환기의 비정상 거동의 수치해석적 연구 (A Numerical Study of Trasient Behavior In a Monolithic Catalytic Converter)

  • 배상수;강동진;김수연;임명택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.76-81
    • /
    • 1995
  • A numerical procedure for the analysis of transient behavior in a monolithic catalytic converter is presented. The thermal behavior of a monolithic catalytic converter is fully coupled with mass transfer and exothermic reaction between exhaust gases and the catalytic converter. In the present study, all these processes are solved simultaneously. The heat transfer process is approximated by combinging one dimensional convection and conduction and the chemical reaction is also simply modelled by using the concepts of reaction rate and reaction heat. All the partial diffenrential equations for the heat transfer, mass transfer and chemical reactions are appximated by using finite volume method. Resulting algebraic equations are solved using the Newton's method. To see the workability of present numerical method, two well known problems, say step increase and step decrease in the gas inlet temperature, have been calculated. Comparion of present solutions with previous solutions shows a good agreement.

  • PDF

Investigation of allowable time-step sizes for generalized finite element analysis of the transient heat equation

  • O'Hara, P.;Duarte, C.A.;Eason, T.
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.235-255
    • /
    • 2010
  • This paper investigates the heat equation for domains subjected to an internal source with a sharp spatial gradient. The solution is first approximated using linear finite elements, and sufficiently small time-step sizes to yield stable simulations. The main area of interest is then in the ability to approximate the solution using Generalized Finite Elements, and again explore the time-step limitations required for stable simulations. Both high order elements, as well as elements with special enrichments are used to generate solutions. When compared to linear finite elements, the high order elements deliver better accuracy at a given level of mesh refinement, but do not offer an increase in critical time-step size. When special enrichment functions are used, the solution can be approximated accurately on very coarse meshes, while yielding solutions which are both accurate and computationally efficient. The major conclusion of interest is that the significantly larger element size yields larger allowable time-step sizes while still maintaining stability of the time-stepping algorithm.

Electrochemical Behavior of AZ31 Mg Alloy in Neutral Aqueous Solutions Containing Various Anions

  • Duyoung Kwon;Hien Van Pham;Pungkeun Song;Sungmo Moon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.311-319
    • /
    • 2023
  • This work was performed to characterize the electrochemical behavior of AZ31 Mg alloy in neutral aqueous solutions where Cl-, SO42-, PO43-, and F- ions were present and pH was adjusted to 6 to exclude the contribution of H+ and OH- ions. Open-circuit potential (OCP) transient, electrochemical impedance spectroscopy (EIS) and potnetiodynamic polarization curves were employed. The OCP value appeared to decrease in the order of F- > Cl- > SO42- > PO43- ions while corrosion current density increased in the same order. Electrochemical impedance spectroscopy (EIS) data showed two capacitive arcs in all the solutions and one more inductive arc appeared in PO43--containing solution. By fitting of two capacitive arcs, capacitance of dense film (Cdf), resistance of porous film (Rpf) and double layer capacitance (Cdl) and charge transfer resistance (Rct) beneath the porous films were obtained. A simplified model in which various thicknesses and coverages of dense and porous films are assumed to be present on the AZ31 Mg alloy surface, is suggested to explain the effects of four different anions on the electrochemical behavior of AZ31 Mg alloy.

초음속 고받음각에서의 원뿔형 물체 주위의 비대칭 와류 특성 연구 (ASYMMETRIC VORTEX CHARACTERISTICS AT A CONE UNDER SUPERSONIC HIGH ANGLE OF ATTACK FLOW)

  • 박미영;노경호;박수형;이재우;변영환
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.8-13
    • /
    • 2008
  • A supersonic viscous flow over a five-degree half-angle cone is studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions show that the asymmetric flow separation is caused by convective instability. The effects of angle of attacks, Reynolds numbers, and Mach numbers have been investigated and it is found that those factors affect the generation of the side force. The side force has the maximum value at ${\alpha}=22^{\circ}$, while over ${\alpha}=22^{\circ}$, asymmetric vortex becomes transient, which results in the unsteady shedding. At the angle of attack of 22 degrees, the side force increases with Reynolds number and decreases with Mach number. The increase of the side force stops over the critical Reynolds number for the present configuration.

이성분 용액의 액체-증기 계면에 대한 통계 열역학적 연구 (The Statistical Thermodynamic Approach to the Liquid-Vapor Interface of Binary Solution)

  • 박형석
    • 대한화학회지
    • /
    • 제15권3호
    • /
    • pp.133-145
    • /
    • 1971
  • 액체구조의 천이상태이론을 이성분용액의 액체-증기 계면에 적용하여, $C_6H_{12}-C_6H_6$ $CCI_4-C_6H_6$, $CHCl_3-C_6H_6$, $CHCl_3-CCl_4$, $CCl_4-CS_2$계의 표면장력, 표면흡착량, 표면에서의 활동도 계수들을 계산하였다.

  • PDF

열수력 기기해석용 CUPID 코드 개발 및 평가 전략 (THE DEVELOPMENT AND ASSESSMENT STRATEGY OF A THERMAL HYDRAULICS COMPONENT ANALYSIS CODE)

  • 박익규;조형규;이재룡;김정우;윤한영;이희동;정재준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.30-48
    • /
    • 2011
  • A three-dimensional thermal-hydraulic code, CUPID, has been developed for the analysis of transient two-phase flows at component scale. The CUPID code adopts a two-fluid three-field model for two-phase flows. A semi-implicit two-step numerical method was developed to obtain numerical solutions on unstructured grids. This paper presents an overview of the CUPID code development and assessment strategy. The governing equations, physical models, numerical methods and their improvements, and the systematic verification and validation processes are discussed. The code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER, are also presented.

Bluffbody 비정상 유동장에 대한 수치해석 (Numerical simulation of unsteady flow field behind bluff body)

  • 류명석;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

암시적 방법을 이용한 충전 알고리즘의 개발 (Development of an implicit filling algorithm)

  • 임익태;김우승
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.

압전세라믹 냉각팬에 대한 수치해석적 연구 (A Numerical Analysis in Piezoelectric Fan Systems)

  • 박지호;김은필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.994-1000
    • /
    • 2011
  • 본 논문은 압전소자의 주기적인 발진운동을 탄성 변환하여 유체유동을 유발하는 압전소자 팬의 수치해석 모델에 대한 연구이다. LED 모듈 등의 고밀도 열이 발생하는 소형 전자장치의 냉각에 적용이 가능한 압전소자 냉각팬의 성능 향상을 위해 CFD 도구를 이용하였다. 본 논문의 결과는 압전소자의 길이 5cm와 방열판의 길이 3cm라는 비율이 효과적이었다. 이는 기하학적으로 비슷한 형태를 가지고 다른치수를 가지는 모델에서 기초적인 설계를 하는데 도움이 될 것이다.

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.