• Title/Summary/Keyword: transient improvement

Search Result 322, Processing Time 0.031 seconds

Improvement on transient response of a Indirect Controlled Current PWM - VSC (간접전류제어 PWM 전압형 CONVERTER의 과도응답 개선)

  • Park, Min-Ho;Lee, Jin-Woo;Park, Young-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.245-249
    • /
    • 1989
  • From the careful analysis of the transformed dq system equations of a PWM Voltage Source Converter ( PWM - VSC ), a novel voltage control is proposed which is based on the derivative of in-phase current component of line currents and the relation between dc-link voltage and in-phase current component. A simple logical algorithm to implement the proposed scheme is also presented at transient state. The sinusoidal PWM is adopted at steady state. The simulation results show good transient characteristics.

  • PDF

Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs (P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Ahn, Jung-Jun;Sung, Bum-Sik;Jung, Ji-Hwan;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

A Study on the Auto-Reclose Dead lime Control using Neural Network based On-line Transient Stability Assessment (신경회로망을 이용한 On-line 과도안정도 평가에 의한 자동재폐로 무전압 시간제어 연구)

  • Kim, Il-Dong;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.131-136
    • /
    • 1995
  • This paper presents a functional ability improvement of auto-reclosing relay in the power transmission line protection. When the high speed auto-reclosing is successful, Auto-reclosing is practically valuable to improve the transient stability limit of a power system, but it is fail due to surviving fault, both electrical and mechanical stresses can result on the transformers and turbine-generator. It is true that the longer dead time of the reclosing relay gives the higher rate of successful reclosing, On the other hand, the power system does not always need high speed reclosing because of enough stability margin. This paper proposed "stability margin based dead time reclosing" in order to decrease not only the rate of unsuccessful reclosing, but the possibility of the harmful stress also. On-line transient stability assessment using artificial neural network, for implementing the proposed scheme, has studied and tested with resonable results.

  • PDF

Improvement of Transient Stability Energy Margin by using UPFC (UPFC를 이용한 과도안정도 에너지마진 향상)

  • Lee, Sung-Gul;Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.152-154
    • /
    • 2001
  • This paper presents a method for determination of UPFC control quantity in order to enhance the power system transient stability energy margin using Genetic Algorithms in multi-machine system. We use the minimization of energy margin as the object function in GA. To set critical energy, we use the potential energy boundary surface(PEBS) method. PEBS is one of the transient energy function(TEF) method. And we used the series voltage compensator as the UPFC model. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.

  • PDF

An Improvement of Transient Stability of Multi-machine Power System (다기계통의 과도 안정도 향상)

  • Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.911-913
    • /
    • 1997
  • This paper presents a method for optima] placement of series capacitors in order to improve the power system transient stability, using genetic algorithms. For the formulation, this paper considers the objective function which is the energy margin as the difference between transient energy and critical energy. The most important factor in determining an accurate critical energy is the controlling unstable equilibrium point (UEP). This paper proposes the controlling UEP methods, concurrently with the DFP(Davidon-Fletcher-Powell) method, which enables the enhancement of multi-machine analysis. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness in determining the locations to install series capacitors and the it's size to be installed in system, simultaneously.

  • PDF

The Stablity and Transient Response in the Buck-Boost DC-DC Converter (승강엽형 DC-DC 콘버어터의 안정도 및 과도 응답)

  • 김희준;김순창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.421-430
    • /
    • 1991
  • This paper investigated the errect of the right-half-plane zero on stability in the buck-boost DC-DC converter which is one type of the switching regulator and the stability region for the variation of the output current is obtained by evaluating the feedback gain. And it is clarified that the damping ratio decreases gradually by increase of the feedback loop gain and the regulation system of the converter becomes unstable, and from the transient response analysis we obtainedthe stability region about this converter. From above result it is known that the stability decreases by the existence of the right-half-plane zero. For the improvement of stability, we carried out one pole compensation in feedback circuit and obtained the avaliable stability region in relation to the gain bandwidth product from the stability and transient response analysis. These results were established experiment.

  • PDF

Real-Time Estimation of Multi TCSC Reference Quantity for Improvement of Transient Stability Energy Margin (과도안정도 에너지 마진 향상을 위한 다기의 TCSC 적정량 실시간 산정)

  • Kim, Su-Nam;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.454-463
    • /
    • 2001
  • This paper presents a method for real-time estimation of TCSC reference quantity in order to enhance the power system transient stability energy margin using artificial neural network in multi-machine system. This paper has the three parts, the first part is to determine the lines to be installed by TCSC. The seconds is to estimate the energy margin using by ANN. To get the critical energy for training, we use the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method. And the last is to determine the TCSC reference quantity. In order to make training data for ANN in this step, we use genetic algorithm(GA). The proposed method is applied to 39-bus, 46-line. 10-machine model system to show its effectiveness.

  • PDF

Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks (재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선)

  • O, Won-Geun;Jo, Seong-Eon;So, Ji-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge (일정 전류에서 연료전지의 비정상 특성)

  • Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.