• Title/Summary/Keyword: transient dynamics

Search Result 380, Processing Time 0.023 seconds

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

  • Lee, Ingu;Lee, Sebok;Pang, Yoonsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.851-857
    • /
    • 2014
  • Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-${\beta}$-caroten-8'-al and 7',7'-dicyano-7'-apo-${\beta}$-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-${\beta}$-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the $S_2$ and $S_1$ excited states.

Transient analysis of point defect dynamics in czochralski-grown silicon crystals

  • Wang, Jong-Hoe;Oh, Hyun-Jung;Park, Bong-Mo;Lee, Hong-Woo;Yoo, Hak-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.259-263
    • /
    • 2001
  • The continuum model of transient point defect dynamics to predict the concentrations of interstitial and vacancy is established by estimating expressions for the thermophysical properties of intrinsic point defects. And the point defect distribution in a Czochralski-grown 200 mm silicon crystal and the location of oxidation-induced stacking fault ring(OiSF-ring) created during the cooling of crystals are calculated by using the numerical analysis. The purpose of this paper is to show that his approach lead to predictions that are consistent with experimental results. Predicted point defect distributions by transient point defect dynamic analysis are in good qualitative agreement with experimental data under widely and abruptly varying crystal pull rates when correlated with the position of the OiSF-ring .

  • PDF

Multiple Order Diffractions by Laser-Induced Transient Grating in Nematic MBBA Film

  • 김성규;김학진
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.705-711
    • /
    • 1999
  • The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals.

Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique (Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구)

  • Kim, Seon-Jin;Kim, Seong-Su;Park, No-Suk;Cha, Min-Whan;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF

FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

Fuel Cell Stack Dynamics Modeling Considering Load Variation (부하의 변화를 고려한 연료전지 스택 동특성 모델링)

  • Ko, Jeong-Min;Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • In this paper, transient voltage response of Polmer Electrolyte Membrane Fuel Cell (PEMFC) stack is analyzed and voltage dynamic characteristic is modeled for optimal design of power conditioning system (PCS). According that the load is changed, the corresponding operating voltage of fuel cell stack is also varied with a certain deep and rising time due to the chemical and mechanical responses. This transient behavior can affect on the operation with respect of PI gain in controller, duty ratio, capacitor of capacitor and so on. So in this paper the detailed theoretical analysis of transient voltage dynamics is explained and the methodology of dynamic modeling is introduced. In addition, the validity and feasibility of the proposed dynamic model is verified by experimental results under various load conditions.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.