• Title/Summary/Keyword: transgenic rice plants

Search Result 146, Processing Time 0.026 seconds

Growth and Yield Response of Transgenic Rice Plants Expressing Protoporphyrinogen Oxidase Gene from Bacillus subtilis

  • Kuk, Yong-In;Chung, Jung-Sung;Sunyo Jung;Kyoungwhan Back;Kim, Han-Yong;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase (Protox), the last shared enzyme of the porphyrin pathway in the expressed cytoplasm or the plastids, were compared with non-trangenic rice plants in their growth characteristics such as tiller number, plant height, biomass, and yield. Transgenic rice plants of $\textrm{T}_3$ generation had 8 to 15 % and 25 to 43% increases in tiller number compared to non-transgenic rice plants at 4 and 8 weeks after transplanting(WAT); similar values were observed for $\textrm{T}_4$ generation at 4 and 8 WAT. However, the plant height in both $\textrm{T}_3$ and $\textrm{T}_4$ generations was similar between transgenic rice plants and non-transgenic rice plants at 4 and 8 WAT. Transgenic rice plants had 13 to 32% increase in above-ground biomass and 9 to 28% increase in grain yield compared to non-transgenic rice plants, demonstrating that biomass and yield correlate with each other. The increased grain yield of the transgenic rice plants was closely associated with the increased panicle number per plant. The percent of filled grain, thousand grains and spikelet number per panicle were similar between transgenic and non-transgenic rice plants. Generally, the growth and yield of transgenic generations ($\textrm{T}_2$, $\textrm{T}_3$, and $\textrm{T}_4$) and gene expressing sites (cytoplasm-expressed and plastid-targeted transgenic rice plants) were similar, although they slightly varied with generations as well as with gene expressing sites. The transgenic rice plants had promotive effects, indicating that regulation of the porphyrin pathway by expression of B. subtilis Protox in rice influences plant growth and yield.

The Function of ArgE Gene in Transgenic Rice Plants

  • Guo, Jia;Seong, Eun-Soo;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.6
    • /
    • pp.524-529
    • /
    • 2007
  • We carried out to study the function of ArgE in transgenic rice plants, which were confirmed by PCR analysis and hygromycin selection. Transgenic rice plants were with selectable marker gene(HPT) inserted in genome of the rice. Southern analysis with hpt probe confirmed by two restriction enzymes that copy numbers of the selectable gene was introduced into the plant genome. We displayed that the relationship between drought stress and ArgE gene with the overexpressing rice plants. From this result, we observed that the degree of leaves damage has no difference in control and transgenic lines. The total RNAs were extracted from 6 weeks-seedling in normal condition in order to examine their expression levels with ArgE-overexpressed transgenic rice. In particular, expression patterns of genes encoding enzymes involved in abiotic stress, including drought and salt stresses. OsGF14a and OsSalt were investigated by reverse transcription-PCR(RT-PCR). Expression levels of the OsSalt gene decreased significantly in transgenic rice plants compared to control plant. However, ion leakage measurement did not demonstrate any leaves damage change between control and ArgE transgenic plants exposure to mannitol treatment. These results suggest that expression of the ArgE is not involved in tolerance for drought stress in rice but may playa role of signaling networks for salt-induced genes.

Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) confers resistance to the herbicide glyphosate in transgenic rice

  • Lee, Soo-In;Kim, Hyun-Uk;Shin, Dong-Jin;Kim, Jin-A;Hong, Joon-Ki;Kim, Young-Mi;Lee, Yeon-Hee;Koo, Bon-Sung;Kwon, Sun-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.272-277
    • /
    • 2011
  • Plants expressing Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) are known to be resistant to glyphosate, a potent herbicide that inhibits the activity of the endogenous plant EPSPS. In order to develop herbicide-resistant rice, we prepared transgenic rice plants with CP4 EPSPS gene under the control of CaMV 35S promoter for over-expression. A recombinant plasmid was transformed into rice via Agrobacterium-mediated transformation. A large number of transgenic rice plants were obtained with glyphosate and most of the transformants showed fertile. The integration and expression of CP4 EPSPS gene from regenerated plants was analyzed by Southern and northern blot analysis. The transgenic rice plants had CP4 EPSPS enzyme activity levels more than 15-fold higher than the wild-type plants. EPSPS enzyme activity of transgenic rice plants was also identified by strip-test method. Field trial of transgenic rice plants further confirmed that they can be selectively survived at 100% by spay of glyphosate (Roundup$^{(R)}$) at a regular dose used for conventional rice weed control.

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Moriwaki, Teppei;Yamamoto, Yujirou;Aida, Takehiko;Funahashi, Tatsuya;Shishido, Toshiyuki;Asada, Masataka;Prodhan, Shamusul Haque;Komamine, Atsushi;Motohashi, Tsuyoshi
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in $T_1$ and $T_2$ transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. $T_2$ transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

Levels of Resistance and Fitness in Glufosinate-ammonium-Resistant Transgenic Rice Plants (Glufosinate-ammonium 저항성 형질전환벼의 저항성 수준과 적응성에 관한 연구)

  • Yun, Young Beom;Kuk, Yong In
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • The objectives of this research were to quantify resistance levels of transgenic rice expressing the bar gene to glutamine synthetase (GS)-inhibiting, and methionine sulfoximine and photosynthesis-inhibiting herbicide, paraquat, and compare the ammonium accumulation, chilling injury, and yield between transgenic and non-transgenic rice. The transgenic rice lines were 45-96-fold more resistant to glufosinate-ammonium than non-transgenic rice. The transgenic rice lines were also 18-fold more resistant to methionine sulfoximine, but was not resistant to paraquat, which has different target site. Glufosinate-ammonium increased the ammonium accumulation in leaves of non-transgenic rice plants, but had minimal or no effect on leaves of transgenic lines. The transgenic lines except for 258, 411, 607 and 608 were more susceptible during chilling and recovery than non-transgenic rice plants. The yield of transgenic lines 142, 144, 258 and 608 was similar or higher than that of non-transgenic rice in pot conditions.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene

  • Chun, Young Jin;Kim, Dae In;Park, Kee Woong;Jeong, Soon-Chun;Park, Sangkyu;Back, Kyoungwhan;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • The expression of transgenic traits in genetically modified crops is sometimes associated with decreases in crop performance or fitness. These decreases in performance or fitness of transgenic plants in unfavourable conditions may provide valuable information about the ecological consequences of transgene escape. In a glasshouse trial, we tested the cost associated with resistance to herbicides by comparing the growth, yield, and competitive ability of transgenic rice with its parental non-transgenic line. This new line was developed for constitutive overexpression of protoporphyrinogen oxidase (PPO) to increase resistance to herbicides. We evaluated nine agronomic traits of transgenic and non-transgenic rice grown in a replacement series design over four densities. Competitive ability was also assessed between transgenic and non-transgenic plants by analyzing their relative yields based on biomass and seed weight data. Our results indicated that non-transgenic plants showed greater performance than did the transgenic plants when those genotypes were grown in mixtures. The non-transgenic rice plants exhibited superior competitive ability at certain combinations of planting densities and genotype proportions. These results suggest that PPO-herbicide resistance incurs some costs in plant performance and competitive ability.

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10

  • Redillas, Mark C.F.R.;Strasser, Reto J.;Jeong, Jin-Seo;Kim, Youn-Shic;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • In this study, the JIP test was exploited to assess drought-tolerance of transgenic rice overexpressing OsNAC10. Two types of promoters, RCc3 (root-specific) and GOS2 (constitutive), were used to drive the transcription factor OsNAC10, a gene involved in diverse functions including stress responses. Three-month-old plants were exposed to drought for 1 week and their fluorescence kinetics was evaluated. Our results showed that drought-treated non-transgenic plants (NT) have higher fluorescence intensity at the J phase (2 ms) compared to transgenic plants, indicating a decline in electron transport beyond the reduced plastoquinone ($Q_A^-$). As manifested by negative L bands, transgenic plants also showed higher energetic connectivity and stability over NT plants under drought conditions. Also, the pool size of the end electron acceptor at the photosystem I was reduced more in NT than in transgenic plants under drought conditions. Furthermore, the transgenic plants had higher $PI_{total}$, a combined parameter that reflects all the driving forces considered in JIP test, than NT plants under drought conditions. In particular, the $PI_{total}$ of the RCc3:OsNAC10 plants was higher than that of NT plants, which was in good agreement with their differences in grain yield. Thus, the JIP test proved to be practical for evaluating drought-tolerance of transgenic plants.

Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice

  • Liu, Ai-Ling;Zou, Jie;Liu, Cui-Fang;Zhou, Xiao-Yun;Zhang, Xian-Wen;Luo, Guang-Yu;Chen, Xin-Bo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.