• Title/Summary/Keyword: transformed plants

Search Result 271, Processing Time 0.026 seconds

Coat Protein Gene-Mediated Resistance to Barely Yellow Mosaic Virus-HN and Barely Mild Mosaic Virus-Kor in Transgenic Barely

  • Lee, Kui-Jae;Kim, Hyung-Moo;Park, Min-Kyung;Lee, Wang-Hyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.75.1-75
    • /
    • 2003
  • Barely yellow mosaic(BaYMV) and barely mild mosaic (BaMMV) bymoviruses are both transmitted by the soil-inhabiting fungus Polymyxa gramnis, and are responsible for economic losses in barley crops in Asia and Europe. Because chemical control of the vector is ineffective, the losses can only be prevented by growing resistant barley cultivars. The objective of this study is to produce resistant barley plants by transformation with viral coat protein(cp) genes. Resistance tests of T1 plants transformed with the BaYMV CP gene showed that at least four independent lines had clear resistance to BaYMV but two other lines were highly susceptible with severe symptoms. The CP gene was detected in all resistant T1 plants by genomic PCR. Most of T2 progenies derived from the resistant T1 lines also showed resistance. In contrast, only one out of 21 independent T2 lines transformed with the BAMMV CP gene tested showed clear resistance to BaMMV, and others were very susceptible. Further analyses of resistance and CP gene expression are in progress.

  • PDF

Effect of Introducing Chitinase Gene on the Resistance of Tuber Mustard against White Mold

  • Ojaghian, Seyedmohammadreza;Wang, Ling;Xie, Guan-Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.378-383
    • /
    • 2020
  • The objective of this research was introduction of chit42 to tuber mustard plants through Agrobacteriummediated transformation against white mold caused by Sclerotinia sclerotiorum. The binary plasmid pGisPEC1 was used in this study. Polymerase chain reaction analysis detected the transgene in 27 transformants with a transformation efficiency of 6.9%. Southern blot test was used to assess the copy number of transgene in tuber mustard plants. One, two, two, and two chit42-related bands were observed in the transformed lines TMB4, TMB7, TMB12, and TMB18, respectively. Enzymatic tests showed a significant increase in the activity of endochitinase in protein isolated from leaf tissues of chit42 transgenic 75-day tuber mustard lines. The pathogenicity of three pathogen isolates was tested on the leaves of transformed plans. The results of current study showed that expression of the gene chit42 in tuber mustard plants markedly reduced infection radius on the leaves 7 days after inoculation with the fungus.

Transformation of Brassica napus with Glutathione Reductase Gene (Glutathione reductase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Chung, Min-Sup;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • This study was conducted to construct of the transgenic plants wliich are resistant to oxidative stresses including ozone with B. mpestris cytosolic glutathione reductase cDNA using the binary vector system of Agrobacterium tumefaciens. The 1.8kb B. campestris cytosolic GR cDNA was subcloned into the unique Sma I site of the plant transformation vector pBKSI- I, downstream of the constitutive CaMV 35s promoter and upstream of the nos termination sequence, in place of the uidA (GUS) reporter gene. The resulting plant transformation vector, pBKS-GRI, was introduced into A. tumefaciens LBA4404 by two cycles of tkeze-thaw method. The B. nqus cotyledonary petioles were transformed by the Agrubaferium harboring pBKS-GRI. Transformed shoots were induced and selected on regeneration medium supplemented with kanarnycin. The shoot formation was increased remarkably by addition of Ag$NO_3$, in MS media. The transgenic plants were analyzed for the presence of the B. campestris GR gene by Southern blot analysis and it was confirmed that a foregin gene was stably integrated into the genomes of B. nqus plants.

  • PDF

Studies on the Induction of Transformation in Cereal Plants. III. Cultures and Regeneration of Rice Protoplasts Transferred Foreign Genes. (곡물류의 형질전환 유도에 관한 연구 III. 외래 유전자가 도입된 벼 원형질체의 배양 및 재분화)

  • Hwang, Baik;Hwang, Sung-Jin;Im, Hyong-Tak;Kang, Young-Hee
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.62-68
    • /
    • 1993
  • Transformed rice plantlet were recovered from protoplasts by electroporation with the plasmld pB 1121, which contain the plant expressible NPT-II and GUS genes. Embryonic cell suspension culture was established with embryonic callus induced from mature seeds of rice (Oryza sativa L. cv. Dong-jin) on the MS medium supplemented with 2.0 mg/l 2,4-D, 0.5 mg/l kinetin, 3% sucrose. Protoplasts isolated from embryonic cell suspensions were electroplated and then poterltialty-transformed tissues were selected by growth on the medium containing 200 mg/l kanamycin sulfate. When subjected to GUS assay, they stained blue, indicating the expression of the inserted GUS genes. Plantlets were regenerated from electroplated protoplasts on the hormone free MS medium. Transferred foreign genes in the plants were confirmed by southern hybridization. These results support use of electroporation for transformation of these important cereal plants.

  • PDF

형질전환 연초의 복합바이러스 저항성

  • 이기원;채순용;이청호;이영기;강신웅;박성원;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • KF 116 was TMV resistant tobacco plant and KB 301 was PVY resistant plant transformed with TMV CP gene and PVY CP gene, respectively. These resistant plants were cross-fertilized and the 4 lines of the TMV-PVY resistant plants were selected from F1 hybrid plants. The rate of PVY-resistant plant in these hybrids was 100 percent and that of TMV-resistant plants including delay type was 90-98 percent at 4 weeks after virus inoculation. It was confirmed that the TMV and PVY CP genes were integrated into the genome of hybrid plants by genomic PCR, and Southern blot hybridization. The genome of F1 hybrid plants had one copy and 4 copies of PVY-CP gene and TMV-CP gene, respectively, and CaMV 35S promoters were not methylated, regardless of the difference symptom development to TMV.

  • PDF

Stabilization of photosynthetic machinery against low-temperature photoinhibition by fatty acid unsaturation of membrane lipids in plants

  • Moon, Byoung-Yong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.68-82
    • /
    • 1999
  • CHilling tolereance of plants are closely correlated with the degree of fatty acid unsaturation of membrane lipids. We studied the effects of low-temperature photoinhibition on the photochemical efficiency of photosystem II in terms of fatty acid unsaturation of thylakoid membranes lipids isolated from chilling -sensitive plants and chilling -resistant ones. To directly test the chilling tolerance of photosynthetic machinery in relation to membrane lipids, we further compared wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids after being transformed with cDNA for glycerol-3-phophate acyltransferase from squash. The functional integrity of photosystem II during and recovery of photosynthesis from low-temperature photoinhibition will be discussed in connection with the degree of fatty acid unsaturation of chlorophast membranes lipids.

  • PDF

Herbicide Resistant Turfgrass(Zoysia japonica cv. 'Zenith') Plants by Particle bombardment-mediated Transformation

  • Lim Sun-Hyung;Kang Byung-Chorl;Shin Hong-Kyun
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • Transgenic zoysiagrass (Zoysia japonica cv. Zenith) plants have been obtained by particle bombardment of embryogenic callus with the plasmid pSMABuba, which contains hygromycin resistance (hpt) and bialaphos resistance (bar) genes. Parameters on DNA delivery efficiency of the particle bombardment were partially optimized using transient expression assay of a chimeric $\beta-glucuronidase$(gusA) gene driven by the CaMV 35S promoter. Stably transfarmed zoysiagrass plants were recovered with a selection scheme using hygromycin. Transgenic zoysiagrass plants were confirmed by PCR analysis with specific primer for bar gene. Expression of the transgene in transformed zoysiagrass plants was demonstrated by Reverse transcriptase (RT)-PCR analysis. All the tested transgenic plants showed herbicide BastaR resistance at the field application rate of $0.1\%-0.3\%$.

바이러스 외피단백질 유전자로 형질전환된 연초 식물체의 TMV 저항성 발현 및 유전자 안정성

  • 박성원;이기원;이청호;이영기;강신웅;최순용
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.77-81
    • /
    • 1999
  • Tobacco plants(Nicotiana tabacum cv. NC82) transformed with TMV CP cDNA were self-fertilized until 8th generation (R$_{8}$), and the transgenic plants from 6th to 8th generation were analized for their resistance to tobacco mosaic virus(TMV) and stability of the gene expression. The 6th generation of the plants(R$_{6}$) showed high resistance(81-91 %) to TMV at eight weeks after artificial inoculation with the virus. The transgenic cell line 601 was the most prominant in the expression of resistance. 98 % of the plants showed no symptom without any agronomic phynotepe variation when they were inoculated with the virus in a experimental field. However, 2% of the plants were revealed as delay type of symptom with mild mosaic on a few leaves. The viral resistance in greenhouse tests of the 7th generation (R$_{7}$) was 54-64%, and the number of delay type plants were increased than that of 6th generation plants. In the 8th generation, 81 % of the plants was complete resistant to the virus. The TMV CP cDNA of the transgenic plants of each generation was also confirmed by genomic PCR, and there was no systemic viral multiplication in the resistant plants. It suggests that the viral resistance and gene expression of the transgenic plants might be stable through the generations.ons.s.

  • PDF

Development of Potato Virus Y-Resistant Transgenic Potato (감자 바이러스 Y 저항성 형질전환 감자 개발)

  • PARK, Young Doo;RONIS D.H.;DUYSEN M.E.;CHENG Z.M.;LORENZEN J.H.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.313-317
    • /
    • 1997
  • Leaf segments of the potato (Solanum tuberosum L.) genotypes, ND860-2, Norchip, Russet Norkotah, Goldrush, and Norqueen Russet were transformed with the coat protein gene of potato virus Y (PVY). The white-skinned genotypes, ND860-2 and Norchip, were easily transformed and regenerated into shoots, whereas the three russet-skinned genotypes had low frequencies of regeneration. Transformed shoots were generally recovered in four to six weeks. Antibody to PVY coat protein detected a single band of 30 kD in western blots of transgenic plants. Transformed plants had a normal phenotype in the greenhouse and many showed a delayed buildup of PVY following inoculation. Several transgenic lines had negative ELISA readings 85 days after inoculation. Transgenic lines which did not show detectable levels of PVY antigen will be further tested for resistance to PVY.

  • PDF

Agrobacterium-Mediated Transformation on a Plant with Saccharomyces cerevisiae Acid Phosphatse Gene(PHO5) (Agrobacterium을 이용한 Saccharomyces cerevisiae Acid Phosphatse 유전자 (PHO5) 의 식물체로의 도입)

  • Ki yong Kim;Dae yuong Son;Yong Gu Park;Won Il Jung;Jin Ki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.3
    • /
    • pp.177-183
    • /
    • 1993
  • This study was conducted to obtain the transformed tobacco plants with S. cerevisiae Acid phosphatase gene(PH05) using Agrobacterium tumefaciens and th confirm plant transformation and gene expression. the results obtained were summarized as follows: APase activity of Saccharomyces cereviase NA 87-11A was remarkably showed up as deep red color when assayed by Tohe and Oshima(1974). PH05 fragment, Apase gene, was obtained from pVC727G and the graphically estimated size was about 1.5kb by agarose gel electrophoresis. The sequencing results of 5'end and 3'end of PH05 using dideoxy chain termination method were coinsided with the full length nucleotide already. pBKJ I vector was constructed by isolation of PH05 fragment from pVC727-1 and pBKSI-1 digesred with Sma I and Xba I. Isolated plasmid from transformed A. tumefaciens with constructed pBKJ I when it was electrophoresed with agarose gel. The dosc of tobacco leaf was cocultivated 재소 transformed Agronacterium tumefaciens. Transformed shoots were selected on kanamtcin-containing MS-n/B medium and they were regenerated. The transgenic tobacco plants were elucidated by isolation of genomic DNA and genomic southern hybridization using ${\alpha}-^{32}P$ labelled PH05 fragments. The PH05 in transformed tobacco plants was expressed in leaf, stem and root, and its APase activity was estimated as deep red color by Tohe method.

  • PDF