• Title/Summary/Keyword: transfer layer

Search Result 1,533, Processing Time 0.026 seconds

Linear Stability of Variable-Viscosity Fluid Layer under Convection Boundary Condition (대류 조건하의 가변 점성 유체층의 선형 안전성)

  • 송태호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.132-141
    • /
    • 1992
  • The critical condition for onset of Benard convection with variable viscosity .nu.=.nu.$_{0}$exp(-CT) has been obtained using a linear stability theory. The bottom wall is rigid while the upper surface may be either free or rigid. The two boundaries are subject to convective heat transfer. The critical Rayleigh numbers are presented up to maximum viscosity ratio of 3000. It is greater for smaller upper and/or lower surface Biot numbers. Its dependence on the viscosity ratio is complicated. However, a simple sublayer theory is found to be applicable for extremely large viscosity ratio. In such cases, the critical Rayleigh number and the critical wave number are functions of viscosity ratio and lower surface Biot number.r.

A Numerical Analysis on the Freeze Coating of a Non-Isothermal Flat Plate with a Binary Alloy (비등온 평판의 이성분 합금 냉각코팅에 관한 수치해석)

  • Nam, Jin-Hyeon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1437-1446
    • /
    • 2000
  • A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1.2 square of axial position as predicted by analytic solutions ar first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat starts to decay. The effects of various non-dimensional processing parameters on the behavior of freeze coat are also investigated.

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model (전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.409-414
    • /
    • 2017
  • The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero (균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정)

  • Park, Honghwi;Choi, Muhan;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

Effect of Fire Fighters' Turnout Gear Materials Air Gap on Thermal Protective Performance (소방보호복 소재의 공기간극이 열보호 성능에 미치는 영향)

  • Lee, Jun-Kyoung;Kwon, Jung-Suk
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure adequate protection from the risk of burns, fire fighter's turnout has a composite of more than three components and air gaps between layers of materials. During the flame exposure, radiation and convection heat transfer occurs in the air gap, thus the air gap acts as a thermal resistance with non-linear characteristics. Therefore, in this study, the experiments were performed to identify the effect of various air gap width (0~7 mm) on the thermal protective performance of fire fighter's clothing. The temperatures on each layer and RPP (Radiant Protective Performance, the most effective index representing the thermal protective performance) were measured with various incident radiant heat fluxes. The temperature at the rear surface of the garment decreased and RPP increased with increasing air gap width because the thermal resistance increased. Especially, it could be found that RPP value and air gap width has almost linear relation for the constant incident heat flux conditions. Thus relatively simple RPP predictive equation was suggested for various incident heat flux and air gap conditions.

Generation mechanisms of coastal low level jets associated with baroclinicity along the Texas Gulf coast (텍사스 연안의에 의한 연안저층 제트의 생성 역학)

  • ChoiHyo
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.28-39
    • /
    • 1985
  • The driving mechanisms for low level jets(LLJ) and coastal surface maximum winds are studied with observed wind data from June, 1976 through August, 1980 at Port Aransas and Victoria, Texas, in connection with a baroclinic model. This model is developed considering the forcing functions such as the synoptic and meso-scale pressure gradient, the frictional force, and the atmospheric stability. The results show that a LLJis observed on over 95% of the occasions when a nighttime coastal wind maximum occurred. Baroclinicity generated by sloping terrain during the summertime causes the diurnal variation in the thermal field. This thermal wind component would then decrease the prevailing synoptic-scale southerly wind by day and allow it to increase at night. Nighttime atmospheric stability leads to frictional decoupling which enhances the nocturnal LLJ. At the coastal site neutral stability prevails, thus all owing downward transfer of momentum from the nocturnal LLJ and results in the nocturnal coastal surface wind maximum. The height of LLJis not uniquely related to the inversion layer, and the results of the computations using this model show a good agreement with the observations.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Numerical Analysis of Natural Convection from a Horizontal Surface Immersed in Cold Water (저온의 물속에 잠겨있는 수평 평면에 의하여 야기되는 자연대류의 수치해석)

  • 유갑종;예용택;권혁용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1195-1204
    • /
    • 1992
  • The natural convection from upward and downward facing horizontal isothermal plate immersed in water is studied numerically. The temperature of the plate is from 0.0 .deg. C to 8.0 .deg. C and the ambient water temperature is from 1.0 .deg. C to 10.0 .deg. C. Numerical results are presented for the velocity profiles, temperature profiles, local heat transfer coefficients, and average Nusselt numbers over the entire flow fields. Flow patterns are shown in the upward and downward facing surfaces at different ambient water temperatures. For the upward facing surface, there are upflow and unsteady flow. And the regions of the ambient water temperatures which give rise to the upflow are more extensive as the temperatures of the isothermal surface become more distant from the density extremum temperature. For the downward facing surface, only the downflow region is shown. For the upward facing horizontal isothermal surface, the average Nusselt number(= N $u_{1}$$^{*}$) is 28.86(Ra)$^{0.01}$. And for the downward facing surface, the average Nusselt number(= N $u_{2}$$^{*}$) is $C_{2}$(Ra)$^{0.2}$ and the values of $C_{2}$ are enlarged in the range of 0.785 .leq. $C_{2}$ .leq. 1.250 as increasing of the temperatures of the isothermal surface.ace.ace.

Fabrication and Characterization of Transparent Piezoresistors Using Carbon Nanotube Film (탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구)

  • Lee, Kang-Won;Lee, Jung-A;Lee, Kwang-Cheol;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1857-1863
    • /
    • 2010
  • We present the fabrication and characterization of transparent carbon nanotube film (CNF) piezoresistors. CNFs were fabricated by vacuum filtration methods with 65?92% transmittance and patterned on Au-deposited silicon wafer by photolithography and dry etching. The patterned CNFs were transferred onto poly-dimethysiloxane (PDMS) using the weak adhesion property between the silicon wafer and the Au layer. The transferred CNFs were confirmed to be piezoresistors using the equation of concentrated-force-derived resistance change. The gauge factor of the CNFs was measured to range from 10 to 20 as the resistance of the CNFs increased with applied pressure. In polymer microelectromechanical systems, CNF piezoresistors are the promising materials because of their high sensitivity and low-temperature process.