• Title/Summary/Keyword: transfer impedance

Search Result 362, Processing Time 0.022 seconds

Effectiveness of a Heat Transfer Characteristics of an Auxiliary Chamber for Performance of an Air Spring (보조용기의 열전달특성이 공기스프링의 성능에 미치는 영향)

  • Jang, Ji-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The air spring is used widely because of the easy change of spring constant, and, a superior vibration and shock insulation performance. Among the apparatus using the merits of that, the air spring connected an auxiliary chamber has been developed and used as a component of suspension system for an automobile and a railroad car. The purpose of this study is to suggest a design method reflecting heat transfer effect for an air spring system connected auxiliary chamber. In order to do so, this study investigates change of reaction force along with variations in heat transfer coefficient, and, analyzes an effectiveness of a heat transfer characteristics of an auxiliary chamber for external force attenuation characteristics and impedance characteristics of an air spring connected an auxiliary chamber.

A Study on the Transient Ground Impedance Modeling for Rod-type Grounding Electrodes by Frequency and Time Domain Characteristic Tests (주파수 및 시간영역 특성시험에 의한 봉형 접지전극의 과도 접지임피던스 모델링에 관한 연구)

  • Kim, Jong-Uk;Kim, Kyung-Chul;Shin, Pan-Seok;Choi, Jong-Ki;Choi, Sun-Kyu;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.133-141
    • /
    • 2010
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. Copper and concrete rod electrodes are the most commonly used grounding electrode in electric distribution systems. In this paper, the ground impedance of copper and concrete rods has been measured by frequency and time domain characteristic tests. An equivalent transfer function model of the ground impedance is identified from the measured values by using ARMA method and evaluated by comparing conventional grounding impedances.

The Design of CMOS Second Generation Current Conveyor (CMOS Second Generation Current Conveyor의 설계)

  • 오재환;김상수이영훈
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1037-1040
    • /
    • 1998
  • In this paper, current conveyor building block is introduced and CMOS realization of this block is given. The input-impedance characteristics, current-transfer characteristics and voltage-transfer characteristics of this proposed current conveyor circuit are given. This characteristics of the CMOS current conveyor circuit is useful of the various applications which require a wideband. Using the Spice tool, the circuit is designed and the characteristics of CMOS current conveyor circuit is considered. Finally, refer to the simple applications.

  • PDF

Analysis of Pressure Fluctuations in Oil Hydraulic Pipe Network (유압 관로망에서의 압력 맥동 해석)

  • 이일영;정용길;양경욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 1997
  • An analyzing method for pressure fluctuations in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipelines of it are composed of steel tubes, flexible hoses. Also, accumulators, orifices and lumped oil volume components are attached on it. Transfer matrix method, in other words impedance method, was used for the analysis. The reliability and usefulness of the analyzing method were confirmed by investigation computed results and experimental results got in this study.

  • PDF

Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces

  • Choi, Su-Hee;Seo, Bo-Ra;Kim, Jong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.104-111
    • /
    • 2010
  • The heterogeneous electron transfer at $SiMo_{12}O_{40}^{4-}$ monolayers on GC, HOPG, and Au electrode surfaces are investigated using cyclic voltammetric and electrochemical impedance spectroscopic (EIS) methods. The electron transfer of negatively charged $Fe(CN)_6^{3-}$ species is retarded at $SiMo_{12}O_{40}^{4-}$-modified electrode surfaces, while that of positively charged $Ru(NH_3)_6^{3+}$species is accelerated at the modified surfaces. This is due to the electrostatic interactions between $SiMo_{12}O_{40}^{4-}$ layers on surfaces and charged redox species. The electron transfer kinetics of a neutral redox species, 1,1‘-ferrocenedimethanol (FDM), is not affected by the modification of electrode surfaces with $SiMo_{12}O_{40}^{4-}$, indicating the $SiMo_{12}O_{40}^{4-}$ monolayers do not impart barriers to electron transfer of neutral redox species. This is different from the case of thiolate SAMs which always add barriers to electron transfer. The effect of $SiMo_{12}O_{40}^{4-}$ layers on the electron transfer of charged redox species is dependent on the kind of electrodes, where HOPG surfaces exhibit marked effects. Possible mechanisms responsible for different electron transfer behaviors at $SiMo_{12}O_{40}^{4-}$ layers are proposed.

Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator (마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템)

  • Yoon, Bo-Kyung;Lee, Jun-Young;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

Monitoring of Corrosion Rates of Carbon Steel in Mortar under a Wet-Dry Cyclic Condition

  • Kim, Je-Kyoung;Kang, Tae-Young;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • The corrosion behavior of metal covered with mortar under a wet-dry cyclic condition were investigated to apply for the measurement of corrosion rates of reinforcing steel in concrete structure. The carbon steel in mortar having t=3 mm cover thickness was exposed to the alternate condition of 6 h immersion in chloride containing solution and 18 h drying at $25^{\circ}C$ and 50%RH. The electrochemical phenomena of a carbon steel and mortar interface was explained by an equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE(Constant Phase Element). The corrosion rates were monitored continuously during exposure using an AC impedance technique. Simultaneously, the current distribution over the working electrode during impedance measurement was analyzed from the phase shift, $\theta$, in an intermediate frequency. The result showed that corrosion rate monitoring using an AC impedance method is suitable under the given exposure conditions even during the drying period when the metal is covered with the wetted mortar.

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

  • Choi, Woosung;Shin, Heon-Cheol;Kim, Ji Man;Choi, Jae-Young;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution

  • Danaee, I.;Bahramipanah, N.;Moradi, S.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.153-160
    • /
    • 2016
  • The inhibition ability of N,N-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine (DHBP) as a schiff base against the corrosion of API-5L-X65 steel in 1 M HCl solution was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy. Electrochemical impedance studies indicated that DHBP inhibited corrosion by blocking the active corrosion sites. The inhibition efficiency increased with increasing inhibitor concentrations. EIS data was analysed to equivalent circuit model and showed that the charge transfer resistance of steel increased with increasing inhibitor concentration whilst the double layer capacitance decreased. The adsorption of this compound obeyed the Langmuir adsorption isotherm. Gibbs free energy of adsorption was calculated and indicated that adsorption occurred through physical and spontaneous process. The corrosion inhibition mechanism was studied by potential of zero charge. Polarization studies indicated that DHBP retards both the cathodic and anodic reactions through adsorption on steel surface. Scanning electron microscopy was used to study the steel surface with and without inhibitor.