• Title/Summary/Keyword: transfer beam

Search Result 635, Processing Time 0.027 seconds

A Nulling Anti-Jamming Scheme for the Polyphase Filter Bank-Based Satellite Repeat System (다상 필터 뱅크 기반의 위성 중계시스템을 위한 항재밍 기법의 연구)

  • Oh, Jin-O;Im, Sung-Bin;Ko, Hyun-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.39-47
    • /
    • 2012
  • The combination of the broadband property and the wide area coverage of satellite communications enables high speed transmission. Every user in the region under the satellite beam coverage can tranceiver and one can simultaneously communicate with multiple users. For these reasons, it is one of commendable telecommunication networks for information transfer. Since the satellite communications use open channels, it is likely to cause jamming with unwanted interference signals. In the thesis, APSK (Amplitude Phase Shift Keying) is employed, which is recommended for DVB-S2 due to high-speed transmission and excellent bandwidth efficiency. For obtaining reliable communication under the jamming environments, the communication satellite transponder rests on the polyphase filter bank structure, which enables switching among the subchannels and gain control on each subchannel, resulting in effectively eliminating jamming. Furthermore, the nulling scheme, one of the various anti-jamming approaches, is investigated, in which unwanted jamming signals are eliminated in the frequency domain after passing through the analysis part of the polyphase filter bank. The performance of the nulling scheme is evaluated for tone jamming and partial band jamming in terms of BER and EVM. The simulation results indicate that the nulling scheme improve the BER and EVM performance over the case without any anti-jamming approach.

AC impedance study on the interface between organic electrolyte and amorphous $WO_3$ thin film relating to the electrochemical intercalation of lithium (비정질 $WO_3$ 박막과 전해질 계면에서의 리튬 층간 반응의 교류 임피던스 해석)

  • Kim Byoung-Chul;Ju Jeh-Beck;Sohn Tae-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.33-39
    • /
    • 1998
  • To AC impedance study was performed in this study on the interfacial reaction between organic electrolyte and amorphous tungsten oxides thin film, cathodically coloring oxide, prepared by e-beam evaporation method in the 1 M $LiClO_4/PC$ organic solution. The electrochemical reactions at the interface were analyzed by the transient method and the complex impedance spectroscopy. The impedance spectrums showed that the electro-chemical intercalation of lithium cations was consisted of the following three steps; the first step, the charge transfer reaction of lithium cation at the interface between amorphous tungsten oxides thin film and the organic electrolyte, the second step, the adsorption of lithium atom on the surface of amorphous tungsten oxides thin film, and then the third step, the absorption and the diffusion of lithium atom into amorphous tungsten oxides thin layer. The bleaching and the coloring characteristics of amorphous tungsten oxides thin film were explained in terms of thermodynamic and kinetic variables, the simulated $R_{ct},\;C_{dl},\;D$ and $\sigma_{Li}$ by CNLS fitting method. Especially it was found that the limiting values of electrochromic reaction were the molar ratio of lithium, y=0.167 and the electrode potential, E=2.245 V (vs. Li).

A dose monitoring system for dental radiography

  • Lee, Chena;Lee, Sam-Sun;Kim, Jo-Eun;Symkhampha, Khanthaly;Lee, Woo-Jin;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Yeom, Heon-Young
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods: An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results: The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion: A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose.

On the Effective Shear Rigidity in Ship Vibration Analysis (선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度))

  • K.C.,Kim;S.H.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

  • Li, Song-Mei;Kwon, Bong-Joon;Kwack, Ho-Sang;Jin, Li-Hua;Cho, Yong-Hoon;Park, Young-Sin;Han, Myung-Soo;Park, Young-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.121-121
    • /
    • 2010
  • ZnO is a promising material for the application of high efficiency light emitting diodes with short wavelength region for its large bandgap energy of 3.37 eV which is similar to GaN (3.39 eV) at room temperature. The large exciton binding energy of 60 meV in ZnO provide provides higher efficiency of emission for optoelectronic device applications. Several ZnO/ZnMgO multiple quantum well (MQW) structures have been grown on various substrates such as sapphire, GaN, Si, and so on. However, the achievement of high quality ZnO/ZnMgO MQW structures has been somehow limited by the use of lattice-mismatched substrates. Therefore, we propose the optical properties of ZnO/ZnMgO multiple quantum well (MQW) structures with different well widths grown on lattice-matched ZnO substrates by molecular beam epitaxy. Photoluminescence (PL) spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results show an efficient photo-generated carrier transfer from the barrier to the MQWs, which leads to an increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the wider width. From the power-dependent PL spectra, we observed no PL peak shift of MQW emission in both samples, indicating a negligible built-in electric field effect in the ZnO/$Zn_{0.9}Mg_{0.1}O$ MQWs grown on lattice-matched ZnO substrates.

  • PDF

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

Tension test considering the shape change of CFT Column-to-Beam Interior Diaphragm (CFT 기둥-보 내다이아프램의 형상변화를 고려한 인장실험)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.67-75
    • /
    • 2019
  • The diaphragm used for CFT columns has a small amount of steel to be used, but has a disadvantage that welding is difficult and openings are required because the steel tube and four sides must be welded. The improved diaphragm to be examined in this study was cut into four corners by cutting the center hole for concrete filling. In the improved diaphragm, the width of the center hole is the same as that of the previous diaphragm, but the width of the diaphragm contacting the steel tube is reduced, thereby reducing the welding length by about 70% compared to the previous diaphragm. The in-plane strain of each specimen was analyzed when the same load was applied to the interior diaphragm through a simple tensile test. Using the general FEM program(ANSYS 19.2), the analysis was performed under the same conditions as the actual simple tensile test, and the load transfer between the improved diaphragm and the previous diaphragm was compared. When the width of the diaphragm is equal to or smaller than the flange width, stress is concentrated from the end of the diaphragm, and when the flange width is larger, stress is concentrated at the center.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.