• Title/Summary/Keyword: transducer design

Search Result 383, Processing Time 0.026 seconds

Design of An Orthomode Transducer for Use in Multi-Band Antenna Feeds (다중 대역 안테나 피드용 직교모드 변환기 설계)

  • 황순미;김영민;이석곤;안병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • In this paper, we present design results for an orthomode transducer(OMT) to be used in multi-band antenna feeds. The OMT is realized in the form of a tapered square waveguide, where 18-20 GHz ports are placed in the taper region normal to the waveguide axis, while 30-45 GHz ports are placed in line with the waveguide axis. The reflection coefficient of each port is designed to be less than 20 dB, while the isolation between ports are greater than 15 dB. Thin septa are placed in side ports to reduce the effect of side ports on the return loss of the in-line port. The commercial software HFSS? is used to design the whole structure.

Design of Piezoelectric Floating Mass Transducer for Implantable Middle Ear Hearing Devices (이식형 인공중이용 압전 플로팅 매스 트랜스듀서 설계)

  • Lee, Chang-Woo;Kim, Min-Kyu;Lim, Hyung-Gyu;Yoon, Young-Ho;Park, Il-Yong;Song, Byung-Seop;Cho, Jin-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.473-476
    • /
    • 2005
  • In this paper a new type of piezoelectric floating mass type transducer (PFMT) which has advantages of the piezoelectric transducers and the electromagnetic ones has been proposed and designed. To evaluate the frequency characteristics of the PFMT, the finite element analysis and the acoustic simulation of transducer have been performed. The designed PFMT was implemented by a precision manufacturing and the vibration characteristics of the PFMT were measured. Through the measured results from various experiments, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

  • PDF

Two-Axis Force Rransducer for Measuring Flange Reaction Forces in the Tape Transport of VCR (VCR 주행장치의 2축 플랜지 반력 측정장치 개발)

  • Joo, Jin-Won;Kim, Seung-Hwan;Kim, Gap-Soon;Lee, Kyeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2213-2222
    • /
    • 1996
  • This paper presents the design process and evaluaation results of a two-axis force transducer for measuring flange reaction forces. A double-cantilever beam structure is used as a sensing element, and its optimal configuration is determined based on the derived strain equations to maximize the sensitivity and minimize the regid body displacements. To reduce the coupling errors between two-axis forces, strain distributions by finite elemetns analysis are utilized and the Wheaststone bridge cricuits composed of strain gages are built such that the output voltage should be zero, although strains of four strain gages are not zero. Calibration test shows that the two-azxis force transducer developed in this paper is useful in measuring flange reaction forces within the coupling error of 5.53%.

Simulation of Ultrasonic Dry Cleaning for Semiconductor/display Device Application (반도체/디스플레이 소자용 초음파 건식세정 시뮬레이션 연구)

  • Yun, Eui-Jung;Lee, Gang-won;Kim, Chol-Ho;Lee, Seok-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1259-1263
    • /
    • 2004
  • In this paper, the optimum design of ultrasonic dry cleaning head was investigated. The transducer instead of mechanical dynamic structure was used to generate ultrasonic wave and the horn-shape amplifier was utilized to solve the energy decaying problem of ultrasonic wave with propagating it through the media. The analyses of ultrasonic wave and a fluid for the selected structure of a cleaning head were carried out using SYSNOISE and ANSYS simulators, respectively. Based on simulator results, the distance between a horn and the substrate of 4 mm and the horn diameter of 10 mm were determined to maximize the energy of ultrasonic waves. The cooling structure was also considered to reduce the heat from the transducer and the horn. The equivalent circuit for the fabricated horn was deduced from HP4194A impedance/gain/phase analyzer and the frequency of an ultrasonic wave of 20.25 kHz was confirmed using the parameters of the equivalent circuit.

Design and Fabrication of 2D Array Ultrasonic Transducers with a Conductive Backer (전도성 후면층을 이용한 2D 배열 초음파 트랜스듀서의 설계 및 제작)

  • Woo, Jeongdong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.502-508
    • /
    • 2013
  • In this paper, 2D array transducers using a conductive backer similar to 1-3 composites have been designed, fabricated, and evaluated. The conductive backer was based on well known manufacturing process of 1-3 composites with affordable ingredients. The 2D array transducer had 4,096 elements designed to have 3.5 MHz center frequency and a fractional bandwidth over 60 %. Fabricated prototype of the transducer satisfied the specifications in the center frequency and bandwidth. Performance over the entire elements was so uniform that the standard deviation was less than 0.81 dB. Thus applicability of the conductive backer proposed in this work to 2D array transducers was verified.

Predicting the Firmness of Apples using a Non-contact Ultrasonic Technique

  • Lee, Sangdae;Park, Jeong-Gil;Jeong, Hyun-Mo;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.192-198
    • /
    • 2013
  • Purpose: Methods for non-destructive estimation of product quality have been reported in various industrial fields, but the application of ultrasonic techniques for the agricultural products of potatoes, pears, apples, watermelons, kiwis and tomatoes etc. have been rarely reported since the application of a contact-type ultrasonic transducer in agricultural products is very difficult. Therefore, this study sought to determine the firmness of apples using non-contact ultrasonic techniques. Methods: For this experiment, an ultrasonic experimental tester using a non-contact ultrasonic transducer was created, and a signal processing program was used to analyze the acquired ultrasonic reflected signal. Also, a universal testing machine was used to measure firmness parameters of the apples such as bioyield strength, a firmness factor, after the ultrasonic tests had been performed. Results: Six distance correction factors were calculated to obtain consistent values of ultrasonic properties regardless of the distance between the transducer and the surface of the subject. We developed prediction models of the bioyield strength using the distance correction factors. Conclusions: The optimum prediction model of the bioyield strength of apples using a non-contact ultrasonic technique was a multiple regression model ($R^2=0.9402$).

Detection of Radial Pulse by Combinational Fiber-optic Transducer (조합형 광섬유 트랜스듀서에 의한 요골맥파의 검출)

  • Park, Seung-Hwan;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • The human pulse wave is a vital biosignal that includes the diagnostic data related with the heart and the cardiovascular system of human body. Based on the mechanical transducing method, a pulse detection transducer using optical fiber was developed to acquire the pulses non-invasively. To improve the detection efficiency, we proposed a new design that consists of two combinational parts; detecting part, which is in contact with the pulsating skin and transmits the displacement motion of the pulsating skin to the sensing part, and sensing part, which converts the physical quantity transmitted from the detecting part to electronic signal. By using the new method, we confirmed that the proposed transducer can detect the C point(incisura) and the T wave(tidal wave) which is not easily detected by existing transducers.

  • PDF

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer (벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계)

  • Kim, Jong Hoon;Shin, Dong Ho;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.

Evaluation of Thickness Reduction in Steel Plate by Using SH-EMATs (수평횡파 송수신용 EMAT를 이용한 스틸 박판의 두께 감육 평가)

  • Lee, Jin-Hyuk;Park, Ik-Keun;Kim, Yong-Kwon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • An electromagnetic acoustic transducer(EMAT) is a non-contact transducer which can transmit the ultrasonic guided waves into specimens without couplant. And it can easily generate specific guided waves such as SH(shear horizontal) or Lamb waves by altering the design of coil and magnet. In this study, the SH wave, which is generated by EMAT, has been applied to estimate the thickness-reduction in a steel plate. Especially, the interesting feature of the dispersive behavior in selected wave modes is used to detect the thickness-reduction. Experimental results show that the reduction-level can be quantified by the measurement of the group velocity of the wave which passes though the thinning area.

Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT (웨이브렛 변환과 SH-EMAT을 이용한 배관 용접부 결함 검출)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1511-1519
    • /
    • 2012
  • Pipe structures contain many welded zones, and ultrasonic tests are increasingly being performed by using automated testing devices in order to evaluate the weld integrity. An electromagnetic acoustic transducer (EMAT) is a noncontact transducer that can transmit or receive ultrasonic waves without a couplant. Furthermore, it can easily generate specific guided waves such as SH (shear horizontal) or Lamb waves by altering the design of the coil and magnet. Therefore, an EMAT should be useful for application to an automated ultrasonic inspection system. In this study, SH waves generated using an EMAT were applied to inspect the pipe-weld zone. To analyze the specific SH mode (SH0) from the SH wave signals, wavelet transform was applied. It was found that flaws could be detected precisely because the intensity of the $SH_0$ mode-frequency, which is analyzed by using wavelet transform, is proportional to the length of the flaw.