• 제목/요약/키워드: transcriptome analysis

검색결과 342건 처리시간 0.037초

Transcriptome analysis for the production of recombinant protein in Escherichia coli using DNA microarray

  • 허원재;윤성호;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.745-746
    • /
    • 2001
  • Transcriptome analysis was performed for the production of recombinant protein in E. coli using DNA microarray containing 2,850 genes including all functionally known and putative ones. Changes in transcriptome were analyzed qualitatively and quantitatively to provide their physiological and metabolic meanings.

  • PDF

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

Analysis of Whole Transcriptome Sequencing Data: Workflow and Software

  • Yang, In Seok;Kim, Sangwoo
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.119-125
    • /
    • 2015
  • RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification.

Combined analysis of transcriptome and proteome for high cell density cultivation of Escherichia coli

  • 윤성호;한미정;임근배;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.845-848
    • /
    • 2001
  • For understanding physiology and metabolism under various culture conditions, combined analysis of transcriptome and proteome is attractable way. We have manufactured DNA microarray containing 2,850 genes including all functionally known and putative ones. In this study, we report analysis of transcriptome and proteome during the high cell density culture of E. coli by using DNA microarray and 2-DE. Fed-batch fermentation of E. coli was carried out by exponential feeding of nutrients until the maximum cell density reached 74 g dry cell weight/L (g DCW/L). Changes in transcriptome and proteome during the HCDC are analyzed qualitatively and quantitatively to provide their physiological and metabolic meanings.

  • PDF

Pathway Retrieval for Transcriptome Analysis using Fuzzy Filtering Technique andWeb Service

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.167-172
    • /
    • 2012
  • In biology the advent of the high-throughput technology for sequencing, probing, or screening has produced huge volume of data which could not be manually handled. Biologists have resorted to software tools in order to effectively handle them. This paper introduces a bioinformatics tool to help biologists find potentially interesting pathway maps from a transcriptome data set in which the expression levels of genes are described for both case and control samples. The tool accepts a transcriptome data set, and then selects and categorizes some of genes into four classes using a fuzzy filtering technique where classes are defined by membership functions. It collects and edits the pathway maps related to those selected genes without analyst' intervention. It invokes a sequence of web service functions from KEGG, which an online pathway database system, in order to retrieve related information, locate pathway maps, and manipulate them. It maintains all retrieved pathway maps in a local database and presents them to the analysts with graphical user interface. The tool has been successfully used in identifying target genes for further analysis in transcriptome study of human cytomegalovirous. The tool is very helpful in that it can considerably save analysts' time and efforts by collecting and presenting the pathway maps that contain some interesting genes, once a transcriptome data set is just given.

Comparative transcriptome analysis of Cordyceps militaris grown on germinated soybean media

  • Yoo, Chang-Hyuk;Choi, Jaehyuk
    • 한국버섯학회지
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2022
  • The ascomycete fungus Cordyceps militaris infects lepidopteran insect pupae, forming characteristic fruiting bodies called "Dong Chung Ha Cho" in Korean. They have been used as medicines owing to their anti-allergic, anti-inflammatory, and immune-enhancing effects. This fungus can be grown on the geminated soybeans Rhynchosia nulubilis, which also contains several novel isoflavones. We performed a comparative transcriptome analysis to determine core gene sets or pathways contributing to biologically active products such as isoflavone. Initially, we sequenced 2-week-old fungal cultures on different soybean agar media, where different amounts of water agar were implemented to show different surface topology. We selected 830 upregulated and 188 downregulated genes by comparing linear models of the samples (two-fold change threshold). Gene ontology analysis identified that the "IMP biosynthesis" term was significantly found in the upregulated gene sets. The pathway is involved in the synthesis of cordycepin, the reference chemical for C. militaris. This finding in the transcriptome data is consistent with the previous observation: increased cordycepin concentrations in the C. militaris cultured on germinated soybean.

De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

  • Jo, Yeonhwa;Choi, Hoseong;Bae, Miah;Kim, Sang-Min;Kim, Sun-Lim;Lee, Bong Choon;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제33권5호
    • /
    • pp.478-487
    • /
    • 2017
  • Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV), infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs) for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle

  • Yan, XiangMin;Wang, Jia;Li, Hongbo;Gao, Liang;Geng, Juan;Ma, Zhen;Liu, Jianming;Zhang, Jinshan;Xie, Penggui;Chen, Lei
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1439-1450
    • /
    • 2021
  • Objective: With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods: Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results: In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion: Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.

Human Transcriptome and Chromatin Modifications: An ENCODE Perspective

  • Shen, Li;Choi, Inchan;Nestler, Eric J.;Won, Kyoung-Jae
    • Genomics & Informatics
    • /
    • 제11권2호
    • /
    • pp.60-67
    • /
    • 2013
  • A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE), recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.

A Study on Transcriptome Analysis Using de novo RNA-sequencing to Compare Ginseng Roots Cultivated in Different Environments

  • Yang, Byung Wook
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.5-5
    • /
    • 2018
  • Ginseng (Panax ginseng C.A. Meyer), one of the most widely used medicinal plants in traditional oriental medicine, is used for the treatment of various diseases. It has been classified according to its cultivation environment, such as field cultivated ginseng (FCG) and mountain cultivated ginseng (MCG). However, little is known about differences in gene expression in ginseng roots between field cultivated and mountain cultivated ginseng. In order to investigate the whole transcriptome landscape of ginseng, we employed High-Throughput sequencing technologies using the Illumina HiSeqTM2500 system, and generated a large amount of sequenced transcriptome from ginseng roots. Approximately 77 million and 87 million high-quality reads were produced in the FCG and MCG roots transcriptome analyses, respectively, and we obtained 256,032 assembled unigenes with an average length of 1,171 bp by de novo assembly methods. Functional annotations of the unigenes were performed using sequence similarity comparisons against the following databases: the non-redundant nucleotide database, the InterPro domains database, the Gene Ontology Consortium database, and the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 4,207 unigenes were assigned to specific metabolic pathways, and all of the known enzymes involved in starch and sucrose metabolism pathways were also identified in the KEGG library. This study indicated that alpha-glucan phosphorylase 1, putative pectinesterase/pectinesterase inhibitor 17, beta-amylase, and alpha-glucan phosphorylase isozyme H might be important factors involved in starch and sucrose metabolism between FCG and MCG in different environments.

  • PDF