DOI QR코드

DOI QR Code

De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

  • Jo, Yeonhwa (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hoseong (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Bae, Miah (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Sang-Min (Crop Foundation Division, National Institute of Crop Science, RDA) ;
  • Kim, Sun-Lim (Crop Foundation Division, National Institute of Crop Science, RDA) ;
  • Lee, Bong Choon (Crop Foundation Division, National Institute of Crop Science, RDA) ;
  • Cho, Won Kyong (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.03.20
  • Accepted : 2017.06.27
  • Published : 2017.10.01

Abstract

Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV), infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs) for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

Keywords

References

  1. Ali, A. and Kobayashi, M. 2010. Seed transmission of Cucumber mosaic virus in pepper. J. Virol. Methods 163:234-237. https://doi.org/10.1016/j.jviromet.2009.09.026
  2. Barba, M., Czosnek, H. and Hadidi, A. 2014. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106-136. https://doi.org/10.3390/v6010106
  3. Burger, J. T. and Maree, H. J. 2015. Metagenomic next-generation sequencing of viruses infecting grapevines. Methods Mol. Biol. 1302:315-330.
  4. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G. and Durbin, R. 2011. The variant call format and vcftools. Bioinformatics 27:2156-2158. https://doi.org/10.1093/bioinformatics/btr330
  5. Domier, L. L., Hobbs, H. A., McCoppin, N. K., Bowen, C. R., Steinlage, T. A., Chang, S., Wang, Y. and Hartman, G. L. 2011. Multiple loci condition seed transmission of Soybean mosaic virus (SMV) and smv-induced seed coat mottling in soybean. Phytopathology 101:750-756. https://doi.org/10.1094/PHYTO-09-10-0239
  6. Edwards, R. A. and Rohwer, F. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3:504-510. https://doi.org/10.1038/nrmicro1163
  7. Eggenberger, A. L., Stark, D. M. and Beachy, R. N. 1989. The nucleotide sequence of a soybean mosaic virus coat protein-coding region and its expression in Escherichia coli, Agrobacterium tumefaciens and tobacco callus. J. Gen. Virol. 70:1853-1860. https://doi.org/10.1099/0022-1317-70-7-1853
  8. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N. and Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8:1494-1512. https://doi.org/10.1038/nprot.2013.084
  9. Herridge, D. F., Peoples, M. B. and Boddey, R. M. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1-18. https://doi.org/10.1007/s11104-008-9668-3
  10. Hill, J. H. and Whitham, S. A. 2014. Control of virus diseases in soybeans. Adv. Virus Res. 90:355-390.
  11. Jafarpour, B., Shepherd, R. and Grogan, R. 1979. Serologic detection of bean common mosaic and lettuce mosaic viruses in seed. Phytopathology 69:1125-1129. https://doi.org/10.1094/Phyto-69-1125
  12. Jo, Y., Choi, H., Yoon, J.-Y., Choi, S.-K. and Cho, W. K. 2016. In silico identification of Bell pepper endornavirus from pepper transcriptomes and their phylogenetic and recombination analyses. Gene 575:712-717. https://doi.org/10.1016/j.gene.2015.09.051
  13. Leinonen, R., Sugawara, H. and Shumway, M. 2011. The sequence read archive. Nucleic Acids Res. 39:D19-D21. https://doi.org/10.1093/nar/gkq1019
  14. Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  15. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and Durbin, R. 2009. The sequence alignment/map format and samtools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  16. Madden, T. 2013. The BLAST sequence analysis tool. In: The NCBI handbook (2nd ed.), ed. by National Center for Biotechnology Information. Bethesda, MD, USA.
  17. Massart, S., Olmos, A., Jijakli, H. and Candresse, T. 2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 188:90-96. https://doi.org/10.1016/j.virusres.2014.03.029
  18. Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70:439S-450S. https://doi.org/10.1093/ajcn/70.3.439s
  19. Metzker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11:31-46. https://doi.org/10.1038/nrg2626
  20. Milne, I., Bayer, M., Cardle, L., Shaw, P., Stephen, G., Wright, F. and Marshall, D. 2010. Tablet-next generation sequence assembly visualization. Bioinformatics 26:401-402. https://doi.org/10.1093/bioinformatics/btp666
  21. Morales, F. J. and Castano, M. 1987. Seed transmission characteristics of selected bean common mosaic virus strains in differential bean cultivars. Plant Dis. 71:51-53. https://doi.org/10.1094/PD-71-0051
  22. Morozova, O. and Marra, M. A. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255-264. https://doi.org/10.1016/j.ygeno.2008.07.001
  23. Pimentel, D. and Patzek, T. W. 2005. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 14:65-76. https://doi.org/10.1007/s11053-005-4679-8
  24. Ruiz, M., Simon, A., García, M. and Janssen, D. 2014. First report of Lettuce chlorosis virus infecting bean in spain. Plant Dis. 98:857.1.
  25. Song, Q.-X., Li, Q.-T., Liu, Y.-F., Zhang, F.-X., Ma, B., Zhang, W.-K., Man, W.-Q., Du, W.-G., Wang, G.-D., Chen, S.-Y. and Zhang, J. S. 2013. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. J. Exp. Bot. 64:4329-4341. https://doi.org/10.1093/jxb/ert238
  26. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. Mega6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Vodovar, N., Goic, B., Blanc, H. and Saleh, M.-C. 2011. In silico reconstruction of viral genomes from small rnas improves virus-derived small interfering rna profiling. J. Virol. 85:11016-11021. https://doi.org/10.1128/JVI.05647-11
  28. Wang, Y. and Qian, P.-Y. 2009. Conservative fragments in bacterial 16s rRNA genes and primer design for 16s ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401. https://doi.org/10.1371/journal.pone.0007401
  29. Wrather, J., Anderson, T., Arsyad, D., Tan, Y., Ploper, L., Porta-Puglia, A., Ram, H. and Yorinori, J. 2001. Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Can. J. Plant Pathol. 23:115-121. https://doi.org/10.1080/07060660109506918
  30. Wylie, S., Wilson, C., Jones, R. and Jones, M. 1993. A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. Aust. J. Agr. Res. 44:41-51. https://doi.org/10.1071/AR9930041
  31. Yanagisawa, H., Tomita, R., Katsu, K., Uehara, T., Atsumi, G., Tateda, C., Kobayashi, K. and Sekine, K.-T. 2016. Combined DECS analysis and next-generation sequencing enable efficient detection of novel plant RNA viruses. Viruses 8:70. https://doi.org/10.3390/v8030070
  32. Yang, Y., Kim, K. S. and Anderson, E. J. 1997. Seed transmission of cucumber mosaic virus in spinach. Phytopathology 87:924-931. https://doi.org/10.1094/PHYTO.1997.87.9.924