• Title/Summary/Keyword: transcriptional analysis

Search Result 547, Processing Time 0.037 seconds

Application of Toxicogenomic Analysis to the Monitoring of Environmental Toxicity Using Recombinant Bioluminescent Bacteria and Cultured Mammalian Cells

  • Choi, Sue Hyung;Gu, Man Bock;Yasuyuki, Sakai
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2003.06a
    • /
    • pp.129-131
    • /
    • 2003
  • Recombinant bioluminescent bacteria and cultured human cells were applied for toxicogenomic analysis of environmentally hazardous chemicals. Recombinant bioluminescent biosensing cells were used to detect and classify the toxicity caused by various chemicals. Classification of toxicity was realized based upon the chemicals' mode of action using DNA-, oxidative-, protein, and membrane-damage sensitive strains. As well, a simple double-layered cell culture system using Caco-2 cells and Hep G2 cells, which mimic the metabolic processes occurring in humans, such as adsorption through the small intestine and biotransformationin both the small intestine and the liver, was developed to investigate the toxicity of hazardous materials to humans. For a more in-depth analysis, a DNA microarray was used to study the transcriptional responses of Caco-2 and Hep G2 cells to benzo〔a〕pyrene.

  • PDF

A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

  • Yu, Weishi;Li, Yongqing;Zhou, Xijin;Deng, Yun;Wang, Zequn;Yuan, Wuzhou;Li, Dali;Zhu, Chuanbing;Zhao, Xueying;Mo, Xiaoyang;Huang, Wen;Luo, Na;Yan, Yan;Ocorr, Karen;Bodmer, Rolf;Wang, Yuequn;Wu, Xiushan
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.443-453
    • /
    • 2008
  • The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Role of CopA to Regulate repABC Gene Expression on the Transcriptional Level (전사 수준에서 repABC 유전자 발현을 조절하는 CopA 단백질의 역할)

  • Sam Woong Kim;Sang Wan Gal;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;In Gyu Baek;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • Since replication of plasmids must be strictly controlled, plasmids that generally perform rolling circle replication generally maintain a constant copy number by strictly controlling the replication initiator Rep at the transcriptional and translational levels. Plasmid pJB01 contains three orfs (copA, repB, repC or repABC) consisting of a single operon. From analysis of amino acid sequence, pJB01 CopA was homologous to the Cops, as a copy number control protein, of other plasmids. When compared with a CopG of pMV158, CopA seems to form the RHH (ribbon-helix-helix) known as a motif of generalized repressor of plasmids. The result of gel mobility shift assay (EMSA) revealed that the purified fusion CopA protein binds to the operator region of the repABC operon. To examine the functional role of CopA on transcriptional level, 3 point mutants were constructed in coding frame of copA such as CopA R16M, K26R and E50V. The repABC mRNA levels of CopA R16M, K26R and E50V mutants increased 1.84, 1.78 and 2.86 folds more than that of CopA wt, respectively. Furthermore, copy numbers owing to mutations in three copA genes also increased 1.86, 1.68 and 2.89 folds more than that of copA wt, respectively. These results suggest that CopA is the transcriptional repressor, and lowers the copy number of pJB01 by reducing repABC mRNA and then RepB, as a replication initiator.

Use of .lambda.gt 11 and antibody probes to isolate genes encoding RNA polymerase subunits from bacillus subtilis

  • Suh, Joo-Won;Price, Chester
    • The Microorganisms and Industry
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 1988
  • A genetic analysis of the complex Bacillus subtilis transcriptional apparatus is essential to understand the function, regulation, and interaction of the transcriptase components during growth and sporulation. This approach in Escherichia coli has uncovered fundamental mechanisms regulating gene expression Cole and Nomura, 1986; Lindahl and Zengel, 1986) and an analysis of the B. subtilis transcriptase will allow comoparison of the E.coli system to another bacterium that has evolved under different selective pressures. To this end we used antibody probes to isolate the alpha, beta, and beta' core subunit genes from a .lambda.gtill expression vector library. To address the question of function ans regulation of the minor sigma factors that confer promoter specifity on the polymerase core (Losick et al., 1986), we used the same approach to isolate the gene for the 37,000 dalton sigma factor, sigma-37.

  • PDF

Construction of Recombinant Xanthomonas campestris Strain Producing Insecticidal Protein of Bacillus thuringiensis

  • Shin, Byung-Sik;Koo, Bon-Tag;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.285-289
    • /
    • 1994
  • An insecticidal crystal protein gene, cryIA(c), from Bacillus thuringiensis HD-73 was integrated into the chromosome of a xanthan-producing bacterium, Xanthomonas campestris XP92. The cryIA(c) gene expression cassette was constructed that placed the gene between the trc promoter and rrnB transcriptional terminator. The $lacl^q$ gene was also included to prevent the expression of cryIA(c) gene in X campestris cells. Southem blot analysis confirmed the integration of the cryIA(c) gene expression cassette in chromosome of X campestris XP92 transconjugant. Expression of the insecticidal crystal protein was confirmed by Western blot analysis and bioassay against the larvae of Hyphantria cunea (Lepidoptera: Arctiidae) and Plutella xylostella (Lepidoptera:Plutellidae).

  • PDF

Identification of Amino Acid Residues in the Carboxyl Terminus Required for Malonate-Responsive Transcriptional Regulation of MatR in Rhizobium leguminosarum bv. trifolii

  • Lee, Hwan-Young;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.305-309
    • /
    • 2001
  • MatR in Rhizobium trifolii is a malonate-responsive transcription factor that regulates the expression of genes, matABC, enabling decarboxylation of malonyl-CoA into acetyl-CoA, synthesis of malonyl-CoA from malonate and CoA, and malonate transport. According to an analysis of the amino acid sequence homology, MatR belongs to the GntR family The proteins of this family have two-domain folds, the N-terminal helix-turn-helix DNA-binding domain and the C-terminal ligand-binding domain. In order to End the malonate binding site and amino acid residues that interact with RNA polymerase, a site-directed mutagenesis was performed. Analysis of the mutant MatR suggests that Arg-160 might be involved in malonate binding, whereas Arg-102 and Arg-174 are critical for the repression activity by interacting with RNA polymerase.

  • PDF

Regulation of fpr Gene Encoding NADPH : Ferredoxin Oxidoreductase by the soxRS Locus in Escherichia coli

  • Koh, Young-Sang;Choih, Jenny;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 1996
  • We isolated a promoter inducible by paraquat, a superoxide-generating agent, from Escherichia coli using a promoter-probing plasmid pRS415. From sequence analysis we found out the promoter is for fpr ENCODING nadph : ferredoxin oxidoreductase. We constructed on operon fusion of lacZ gene with fpr promoter to monitor the expression of the gene in the single-copy state. LacZ expression generators, menadione and plumbagin, also induced the expression of .betha.-galactosidase in the fusion strain. On the other hand, no significant induction was observed by treatment with hydrogen peroxide, ethanol, and heat shock. Induction of .betha.-galactosidase was significantly reduced by introducing a .DELTA. sox 8 :: cat of soxS3 :: Tn10 mutation into the fusion strain, indicating that fpr gene is a member of the soxRS regulon. The transcriptional start site was determined by primer extension analysis. Possible roles of fpr induction in superoxide stress were discussed.

  • PDF

Corticosteroid Resistant Asthma

  • Lane, Stephen J.;Lee, Tak-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.801-812
    • /
    • 1995
  • CR asthma is associated with disease chronicity, a positive family history of asthma and in vitro and in vivo defects in mononuclear cell function. The HPA axis in CR asthmatics is suppressed normally by dexamethasone and the pharmacokinetic profile of an oral dose of prednisolone is similar to that found in CS subjects. In addition, competitive binding studies have shown that the ligand binding and nuclear translocation functions of the GR are similar in the two groups. Studies using gel retardation assay have indicated a defect in DNA binding in CR subjects. Chemical mutational analysis of the GR has shown that is not due to a defect in its structure at the cDNA level. Scatchard analysis of the GR/DNA and GR/ligand interactions suggests that there may be transcriptional interference of the GR with other transcriptionally active molecules leading to defective gene transcription.

  • PDF

Protein Arginine Methyltransferase 5 (PRMT5) Regulates Adipogenesis of 3T3L-1 Cells (단백질 아르기닌 메틸전이효소 5(PRMT5)에 의한 3T3L-1 세포의 지방세포 분화 조절)

  • Jang, Min Jung;Yang, Ji Hye;Kim, Eun-Joo
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.765-771
    • /
    • 2018
  • Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a key transcription factor that regulates adipogenesis, and epigenetic control of $PPAR{\gamma}$ is of great interest in obesity-inhibition research. Our previous study showed that CACUL1 (CDK2-associated cullin domain 1) acts as a corepressor that inhibits $PPAR{\gamma}$ transcriptional activity and adipocyte differentiation. Here, we investigated the roles of protein arginine methyltransferase 5 (PRMT5), a novel binding partner of CACUL1, in regulating $PPAR{\gamma}$. The interaction between PRMT5 and CACUL1 was shown by immunoprecipitation assay in vivo and GST pulldown assay in vitro. As shown by luciferase reporter assay, PRMT5 and CACUL1 cooperated to inhibit the transcriptional activity of $PPAR{\gamma}$. The suppressive role of PRMT5 in adipogenesis was examined by Oil Red O staining using 3T3-L1 cells, which stably overexpress or deplete PRMT5. Overexpression of PRMT5 suppresses $PPAR{\gamma}$-mediated adipogenesis, whereas PRMT5 knockdown increases lipid accumulation in 3T3-L1 cells. Consistently, PRMT5 attenuates the expression of Lpl and aP2, the target genes of $PPAR{\gamma}$, as demonstrated by RT-qPCR analysis. Overall, these results suggest that PRMT5 interacts with CACUL1 to impair the transcriptional activity of $PPAR{\gamma}$, leading to the inhibition of adipocyte differentiation. Therefore, the regulation of PRMT5 enzymatic activity may provide a clue to develop an anti-obesity drug.