• 제목/요약/키워드: transcription factor binding sites

검색결과 80건 처리시간 0.031초

Roles of Transcription Factor Binding Sites in the D-raf Promoter Region

  • Kwon, Eun-Jeong;Kim, Hyeong-In;Kim, In-Ju
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.117-122
    • /
    • 1998
  • D-raf, a Drosophila homolog of the human c-raf-1, is known as a signal transducer in cell proliferation and differentiation. A previous study found that the D-raf gene expression is regulated by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. In this study, we found the sequences homologous to transcription factor C/EBP, MyoD, STAT and Myc recognition sites in the D-raf promoter. We have generated various base substitutional mutations in these recognition sites and subsequently examined their effects on D-raf promoter activity through transient CAT assays in Kc cells with reporter plasmids p5'-878DrafCAT carrying the mutations in these binding sites. Through gel mobility shift assay using nuclear extracts of Kc cells, we detected factors binding to these recognition sites. Our results show that transcription factor C/EBP, STAT and Myc binding sites in D-raf promoter region play a positive role in transcriptional regulation of the D-raf gene and the Myo D binding site plays a negative role.

  • PDF

유전자 알고리즘을 이용한 프로모터 영역의 전사인자 결합부위 패턴 탐색 ((Pattern Search for Transcription Factor Binding Sites in a Promoter Region using Genetic Algorithm))

  • 김기봉;공은배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.487-496
    • /
    • 2003
  • 유전자 발현에 매우 중요한 신호역할을 하는 프로모터 영역은 여러 전사인자들이 결합하는 특정 부위들을 갖고 있다. 전사인자의 결합부위는 프로모터의 다양한 부위에 위치하며, 진화론적으로 잘 보존된 Consensus 형태의 염기서열 패턴을 띠고 있다. 본 논문은 이러한 최적의 패턴들을 탐색하기 위해 유전자 알고리즘을 기반으로 하면서, 동시에 MEME 알고리즘의 N-occurrence-per-dataset 모델의 가정과 패턴의 길이를 결정할 수 있는 Wataru 방법의 장점을 따르는 새로운 방법을 제시하고 있다. 이러한 탐색 방법은 유전체 연구자들이 임의의 DNA 염기서열 상에서 프로모터 영역을 예측하거나 특정 전사인자의 결합부위를 탐색하는데 적극 활용할 수 있다.

폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites (DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene)

  • 이용철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제48권6호
    • /
    • pp.879-886
    • /
    • 2000
  • 연구배경: 폐특이 전사조절 유전자인 Thyroid Transcription Factor-1 (TTF-1)유전자는 폐에 선택적인 유전자의 표현의 조절에 중요한 전사인자로 작용하고 폐의 발생에서 morphogenic protein으로서 작용한다. 그러나 현재까지 이 TTF-1 유전자의 전사인자에 대한 연구는 거의 미미하다. DNase 1 hypersensitive(DH) regions은 활동적인 염색체에 대한 중요한 표식자이며 유전자를 조절하는 많은 DNA sequences와 밀접한 관계가 있다. 방법 : 추정적인 distal regulatory elements를 밝혀 내기 위해서 TTF-1을 표현하는 인간의 폐선암 세포주인 NCI-H441을 사용해 DNase 1 hypersensitive site assay를 이용하였다. 결과 : TTF-1 유전자에는 전사의 시작부위에서 +150, -450, -800, 그리고 -1500 base pair부위에 4곳의 DH sites가 있음을 할 수 있었다. 결론 : 이상의 결과로 전사 조절부위가 TTF-1 유전자 내에 그리고 5' prime부위에 위치함을 추정할 수 있었다.

  • PDF

Kinetic Mechanism of Nucleotide Binding to Escherichia coli Transcription Termination Factor Rho: Stopped-flow Kinetic Studies Using ATP and Fluorescent ATP Analogues

  • Kim, Dong-Eun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권1호
    • /
    • pp.23-34
    • /
    • 2004
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. Fluorescence stopped-flow methods using ATP and the fluorescent 2'(3')-O-( N-methylanthraniloyl) derivatives (mant-derivatives) of ATP and ADP were used to probe the kinetics of nucleotide binding to and dissociation from the Rho-RNA complex. Presteady state nucleotide binding kinetics provides evidence for the presence of negative cooperativity in nucleotide binding among the multiple nucleotide binding sites on Rho hexamer. The binding of the first nucleotide to the Rho-RNA complex occurs at a bimolecular rate of 3.6${\times}$10$\^$6/ M$\^$-1/ sec$\^$-1/ whereas the second nucleotide binds at a slower rate of 4.7${\times}$10$\^$5/ M$\^$-1/ sec$\^$-1/ at 18$^{\circ}C$, RNA complexed with Rho affects the kinetics of nucleotide interaction with the active sites through conformational changes to the Rho hexamer, allowing the incoming nucleotide to be more accessible to the sites. Adenine nucleotide binding and dissociation is more favorable when RNA is bound to Rho, whereas ATP binding and dissociation step in the absence of RNA occurs significantly slower, at a rate ∼70- and ∼40-fold slower than those observed with the Rho-RNA complex, respectively.

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun;Choi, Yong-Geun;Lee, Ae-Ree;Seo, Yeo-Jin;Kwon, Mun-Young;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제18권2호
    • /
    • pp.52-57
    • /
    • 2014
  • The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

CONVIRT: A web-based tool for transcriptional regulatory site identification using a conserved virtual chromosome

  • Ryu, Tae-Woo;Lee, Se-Joon;Hur, Cheol-Goo;Lee, Do-Heon
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.823-828
    • /
    • 2009
  • Techniques for analyzing protein-DNA interactions on a genome-wide scale have recently established regulatory roles for distal enhancers. However, the large sizes of higher eukaryotic genomes have made identification of these elements difficult. Information regarding sequence conservation, exon annotation and repetitive regions can be used to reduce the size of the search region. However, previously developed resources are inadequate for consolidating such information. CONVIRT is a web resource for the identification of transcription factor binding sites and also features comparative genomics. Genomic information on ortholog-independent conserved regions, exons, repeats and sequences is integrated into the virtual chromosome, and statistically over-represented single or combinations of transcription factor binding sites are sought. CONVIRT provides regulatory network analysis for several organisms with long promoter regions and permits inter-species genome alignments. CONVIRT is freely available at http://biosoft.kaist.ac.kr/convirt.

락토스 오페론에서 Cyclic AMP Receptor Protein에 의한 두 결합 부위(CRP1과 CRP2)의 결합 특성에 관한 연구 (The Binding Affinities of Two Binding Sites(CRP1 and CRP2 Sites) by Cyclic AMP Receptor Protein at Lactose Operon)

  • 강종백;권건
    • 생명과학회지
    • /
    • 제13권5호
    • /
    • pp.746-750
    • /
    • 2003
  • Lactose operon contains two CRP binding sites at promoter(CRP1 site) and operator(CRP2 site) regions at lac operon. CRP protein can bind to both sites with the different binding affinity. CRP1 site, major CRP binding site, acts the transcription activation with the fully unknown mechanism by binding of CRP. In this study, the binding affinities of CRP1 site and CRP2 site were measured with the fluorescein-labeled oligomers, which contain CRP1 site and the three different spacing sequences between GTGA and TCAC at CRP2 site. Results showed that CRP:cAMP complex bound to CRP1 site 3 times more strongly than CRP2 site and the base spacing between GTGA and TCAC was not the only factor to affect the binding affinity of CRP to CRP2 site.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

프로모터 영역의 전사인자 결합부위 Consensus 패턴 탐색 방법 (Search Method for Consensus Pattern of Transcription Factor Binding Sites in Promoter Region)

  • 김기봉
    • 한국산학기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.1218-1224
    • /
    • 2008
  • 유전자의 상위부분에 위치하면서 해당 유전자의 발현을 제어하는 신호부위 역할을 하는 프로모터 영역은 다양한 전사인자들이 결합하는 특정 신호부위들을 갖고 있다. 이러한 전사인자 결합부위들은 프로모터 영역 내의 매우 다양한 위치에 자리잡고 있으며, 진화론적으로 잘 보존된 Consensus 형태의 염기서열 패턴을 띠고 있다. 본 논문은 이러한 Consensus 패턴 탐색에 사용되는 Wataru 방법, EM 알고리즘, MEME 알고리즘, 유전자 알고리즘 및 Phylogenetic Footprinting 기법 등에 대해 소개하고, 향후 연구방향에 대한 전망을 제시하고자 한다.