DOI QR코드

DOI QR Code

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Yong-Geun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Ae-Ree (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Seo, Yeo-Jin (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kwon, Mun-Young (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Joon-Hwa (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
  • Received : 2014.09.04
  • Accepted : 2014.09.26
  • Published : 2014.12.20

Abstract

The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.

Keywords

References

  1. P. Cubas, N. Lauter, J. Doebley, and E. Coen, Plant J. 18, 215. (1999). https://doi.org/10.1046/j.1365-313X.1999.00444.x
  2. M. Martin-Trillo and P. Cubas, Trends Plant Sci. 15, 31. (2010)
  3. T. Taketa, K. Amano, M. Ohto, K. Nakamura, S. Sato, T. Kato, S. Tabata, and C. Ueguchi, Plant Mol. Biol. 61, 165. (2006). https://doi.org/10.1007/s11103-006-6265-9
  4. K. Tatematsu, K. Nakabayashi, Y. Kamiya, and E. Nambara, Plant J. 53, 42. (2008). https://doi.org/10.1111/j.1365-313X.2007.03308.x
  5. C. Herve, P. Dabos, C. Bardet, A. Jauneau, M. C. Auriac, A. Ramboer, F. Lacout, and D. Tremousaygue, Plant Physiol. 149, 1462. (2009). https://doi.org/10.1104/pp.108.126136
  6. J. L. Pruneda-Paz, G. Breton, A. Para, and S. A. Kay, Science 323, 1481. (2009). https://doi.org/10.1126/science.1167206
  7. I. L. Viola, N. G. Uberti Manassero, R. Ripoll, and D. H. Gonzalez, Biochem. J. 435, 143. (2011). https://doi.org/10.1042/BJ20101019
  8. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277. (1995).
  9. T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA. (2003).
  10. J.-H. Lee and A. Pardi, Nucleic Acids Res. 35, 2965. (2007). https://doi.org/10.1093/nar/gkm184
  11. Y.-G. Choi, H.-E. Kim, J.-H. Lee, J. Korean Magn. Reson. Soc. 17, 76. (2013). https://doi.org/10.6564/JKMRS.2013.17.2.076