• Title/Summary/Keyword: trajectory tracking

Search Result 703, Processing Time 0.03 seconds

Convolution-based Desired Trajectory Generation Method Considering System Specifications (시스템 사양을 고려한 컨볼루션 기반 목표궤적 생성 방법)

  • Lee, Geon;Choi, Young-Jin;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.997-1005
    • /
    • 2010
  • Most motion control systems consist of a desired trajectory generator, a motion controller such as a conventional PID controller, and a plant to be controlled. The desired trajectory generator as well as the motion controller is very important to achieve a good tracking performance. Especially, if the desired trajectory is generated actively utilizing the maximum velocity, acceleration, jerk and snap as given system specifications, the tracking performance would be better. For this, we make use of the properties of convolution operator in order to generate a smooth (S-curve) trajectory satisfying the system specifications. Also, the proposed trajectory generation method is extended to more general cases with arbitrary initial and terminal conditions. In addition, the suggested trajectory generator can be easily realized for real-time implementation. Finally, the effectiveness of the suggested method is shown through numerical simulations.

Trajectory Tracking Control of Mobile Robot via T-S Fuzzy Modeling (T-S 퍼지 모델링을 통한 이동 로봇의 궤도 추적 제어)

  • Hwang, Keun-Woo;Cheon, Seok-Hyo;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1846-1847
    • /
    • 2011
  • In this paper, for the trajectory tracking control of mobile robot, firstly, we obtained the T-S fuzzy models from the tracking-error models, one of which has nonlinear form and the other is linearized around the reference trajectory. Then the tracking control inputs are designed using the proposed fuzzy linearization method and the existed PDC method. Lastly, the tracking performance is tested and compared for each model through simulation.

  • PDF

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

Development of Simulation Model for Trajectory Tracking on Hydraulic System (유압시스템의 궤적 추종 시뮬레이션 모델 개발)

  • Choi, Jong-Hwan
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.61-66
    • /
    • 2008
  • The hydraulic system have been used much in a heavy machine which high power source is desired. In the case of the heavy press machine and the injection molding machine, the use of the hydraulic power is essential especially for increasing productivity and getting the good products. Because the hydraulic circuit is very complex and the system parameters are uncertain, the development of the simulation model for hydraulic system is not easy in the heavy machine. In this case, Many researchers have used a commercial program for analysis and development in a major field of study. In this paper, the aim is to develop the simulation model of the hydraulic system with various commercial program for trajectory tracking. And adaptive control method is applied to the simulation model for the trajectory tracking of a cylinder motion. Load on the cylinder is modeled in ADAMS program, the hydraulic circuit including pump, spool valve and cylinder is modeled in AMESim program and a controller is designed in MatLab/simulink program. The suggested model is applied for the tracking of a cylinder motion, and through computer simulation, its trajectory tracking performance is illustrated.

  • PDF

MPC Based Feedforward Trajectory for Pulling Speed Tracking Control in the Commercial Czochralski Crystallization Process

  • Lee Kihong;Lee Dongki;Park Jinguk;Lee Moonyong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.252-257
    • /
    • 2005
  • In this work, we propose a simple but efficient method to design a target temperature trajectory for pulling speed tracking control of the crystal grower in the Czochralski crystallization process. In the suggested method, the model predictive control strategy is used to incorporate the complex dynamic effect of the heater temperature on the pulling speed into the temperature trajectory design quantitatively. The feedforward trajectories designed by the proposed method were implemented on 200 mm and 300 mm silicon crystal growers in the commercial Czochralski process. The application results have demonstrated its excellent and consistent tracking performance of pulling speed along whole bulk crystal growth.

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

Automatic Performance Tuning of PID Trajectory Tracking Controller for Robotic Systems (로봇 시스템에 대한 PID 궤적추종 제어기의 자동 성능동조)

  • 최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.510-518
    • /
    • 2004
  • The PID trajectory tracking controller for robotic systems shows performance limitation imposed by inverse dynamics according to desired trajectory. Since the equilibrium point can not be defined for the control system involving performance limitation, we define newly the quasi-equilibrium region as an alternative for equilibrium point. This analysis result of performance limitation can guide us the auto-tuning method for PID controller. Also, the quasi-equilibrium region is used as the target performance of auto-tuning PID trajectory tracking controller. The auto-tuning law is derived from the direct adaptive control scheme, based on the extended disturbance input-to-state stability and the characteristics of performance limitation. Finally, experimental results show that the target performance can be achieved by the proposed automatic tuning method.

Optimal trajectory tracking control of a robot manipulator

  • Lee, Gwan-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.980-984
    • /
    • 1990
  • In order to find the optimal control law for the precise trajectory tracking of a robot manipulator, a perturbational control method is proposed based on a linearized manipulator dynamic model which can be obtained in a very compact and computationally efficient manner using the dual number algebra. Manipulator control can be decomposed into two parts: the nominal control and the corrective perturbational control. The nominal control is precomputed from the inverse dynamic model using the quantities of a desired trajectory. The perturbational control is obtained by applying the second-variational method on the linearized dynamic model. Simulation results for a PUMA-560 robot show that, by using this controller, the desired trajectory tracking performance of the robot can be achieved, even in the presence of large initial positional disturbances.

  • PDF

Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System (초음파 위치인식 시스템을 이용한 차량의 무인주행)

  • Kim, Su-Yong;Lee, Jung-Min;Lee, Dong-Hwal;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

Model-based Reference Trajectory Generation for Tip-based Learning Controller

  • Rhim Sungsoo;Lee Soon-Geul;Lim Tae Gyoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.357-363
    • /
    • 2005
  • The non-minimum phase characteristic of a flexible manipulator makes tracking control of its tip difficult. The level of the tip tracking performance of a flexible manipulator is significantly affected by the characteristics of the tip reference trajectory as well as the characteristics of the flexible manipulator system. This paper addresses the question of how to best specify a reference trajectory for the tip of a flexible manipulator to follow in order to achieve the objectives of reducing : tip tracking error, residual tip vibration, and the required actuation effort at the manipulator joint. A novel method of tip-based learning controller for the flexible manipulator system is proposed in the paper, where a model of the flexible manipulator system with a command shaping filter is used to generate a smooth and realizable tip reference trajectory for a tip-based learning controller.