• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.028 seconds

Factor Analysis on the Effect of Win-win Smart Factory Education on Job Satisfaction of Medium and Small-sized Enterprises (상생형 스마트팩토리 교육이 중소기업 직무만족에 미치는 요인분석)

  • Seo, Hongeil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.47-55
    • /
    • 2021
  • Developed countries that have experienced decline in productivity due to the economic crisis in the past have come to recognize the smart factory as an important means to strengthen the competitiveness of the manufacturing industry due to the increase in labor costs, the avoidance of the manufacturing industry, and the resolution of the shortage of skilled manpower. The necessity of nurturing manpower for self-maintenance was felt through identifying factors for successful smart factory introduction by companies and providing smart factory education. Therefore, the effects of educational satisfaction and operational competency on self-efficacy as a parameter and self-efficacy as a parameter were analyzed using research models and hypotheses to determine whether there was an effect between job satisfaction as a dependent variable. As a result of the analysis, it was found that the mediating effect of self-efficacy and self-efficacy on job satisfaction was found to have significant effects on operational competency and self-efficacy as parameters, as well as educational satisfaction and operational competency. The implication of this study is that continuous education and innovation activities are important in order to increase the business performance of companies, and through this, the manufacturing competitiveness of SMEs can be improved.

Real-Time Estimation of Missile Debris Predicted Impact Point and Dispersion Using Deep Neural Network (심층 신경망을 이용한 실시간 유도탄 파편 탄착점 및 분산 추정)

  • Kang, Tae Young;Park, Kuk-Kwon;Kim, Jeong-Hun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.197-204
    • /
    • 2021
  • If a failure or an abnormal maneuver occurs during the flight test of a missile, the missile is deliberately self-destructed so as not to continue the flight. At this time, debris are produced and it is important to estimate the impact area in real-time whether it is out of the safety area. In this paper, we propose a method to estimate the debris dispersion area and falling time in real-time using a Fully-Connected Neural Network (FCNN). We applied the Unscented Transform (UT) to generate a large amount of training data. UT parameters were selected by comparing with Monte-Carlo (MC) simulation to secure reliability. Also, we analyzed the performance of the proposed method by comparing the estimation result of MC.

Urdu News Classification using Application of Machine Learning Algorithms on News Headline

  • Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.229-237
    • /
    • 2021
  • Our modern 'information-hungry' age demands delivery of information at unprecedented fast rates. Timely delivery of noteworthy information about recent events can help people from different segments of life in number of ways. As world has become global village, the flow of news in terms of volume and speed demands involvement of machines to help humans to handle the enormous data. News are presented to public in forms of video, audio, image and text. News text available on internet is a source of knowledge for billions of internet users. Urdu language is spoken and understood by millions of people from Indian subcontinent. Availability of online Urdu news enable this branch of humanity to improve their understandings of the world and make their decisions. This paper uses available online Urdu news data to train machines to automatically categorize provided news. Various machine learning algorithms were used on news headline for training purpose and the results demonstrate that Bernoulli Naïve Bayes (Bernoulli NB) and Multinomial Naïve Bayes (Multinomial NB) algorithm outperformed other algorithms in terms of all performance parameters. The maximum level of accuracy achieved for the dataset was 94.278% by multinomial NB classifier followed by Bernoulli NB classifier with accuracy of 94.274% when Urdu stop words were removed from dataset. The results suggest that short text of headlines of news can be used as an input for text categorization process.

Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD (스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

Investigation of Optimum Cathodic Protection Potential to Prevent Erosion with a Flow Rate of AA5083-H321 for Marine Vessels (선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명)

  • Chong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.288-295
    • /
    • 2020
  • This study investigated the erosion-corrosion characteristics of 5038-H321 aluminum alloy in a natural seawater solution through various electrochemical experiments and flow rate parameters. Cathodic polarization experiments were conducted at flow rates ranging from 4 to 12 knots. Considering the concentration polarization section representing a relatively low current density, the range of the potentiostatic experiment was determined to be -1.6 to -1.0 V. The potentiostatic experiment was conducted at various potentials for 180 minutes in seawater. After the experiment, the corrosion characteristics were evaluated by observing surface morphology and measuring surface roughness. As a result, as the applied potential was lower, the amount of calcareous deposits increased and the roughness tended to increase. On the other hand, it was confirmed that the roughness was larger in the static condition than the flow rate condition due to the influence of the flow velocity. Variations in the chemical composition with flow rate variations were analyzed by energy-dispersive spectroscopy (EDS). In conclusion, the cathodic potential of AA5083-H321 in seawater was determined to be -1.0 V.

A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors

  • Bilmez, Bayram;Toker, Ozan;Alp, Selcuk;Oz, Ersoy;Icelli, Orhan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.310-317
    • /
    • 2022
  • The mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/antimony in the 0.05 MeV-2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient.

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage

  • Wang, Shitan;Wang, Yunyi
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.315-325
    • /
    • 2022
  • Background: Firefighters are required to carry self-contained breathing apparatus (SCBA), which increases the risk of musculoskeletal disorders. This study assessed the newly recruited firefighters' internal forces and potential musculoskeletal disorders when carrying SCBA. The effects of SCBA strap lengths were also evaluated. Methods: Kinematic parameters of twelve male subjects running in a control condition with no SCBA equipped and three varying-strapped SCBAs were measured using 3D inertial motion capture. Subsequently, motion data and predicted ground reaction force were inputted for subject-specific musculoskeletal modeling to estimate joint and muscle forces. Results: The knee was exposed to the highest internal force when carrying SCBA, followed by the rectus femoris and hip, while the shoulder had the lowest force compared to the no-SCBA condition. Our model also revealed that adjusting SCBA straps length was an efficient strategy to influence the force that occurred at the lumbar spine, hip, and knee regions. Grey relation analysis indicated that the deviation of the center of mass, step length, and knee flexion-extension angle could be used as the predictor of musculoskeletal disorders. Conclusion: The finding suggested that the training of the newly recruits focuses on the coordinated movement of muscle and joints in the lower limb. The strap lengths around 98-105 cm were also recommended. The findings are expected to provide injury interventions to enhance the occupational health and safety of the newly recruited firefighters.

Comparative Analysis of Machine Learning Models for Crop's yield Prediction

  • Babar, Zaheer Ud Din;UlAmin, Riaz;Sarwar, Muhammad Nabeel;Jabeen, Sidra;Abdullah, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.330-334
    • /
    • 2022
  • In light of the decreasing crop production and shortage of food across the world, one of the crucial criteria of agriculture nowadays is selecting the right crop for the right piece of land at the right time. First problem is that How Farmers can predict the right crop for cultivation because famers have no knowledge about prediction of crop. Second problem is that which algorithm is best that provide the maximum accuracy for crop prediction. Therefore, in this research Author proposed a method that would help to select the most suitable crop(s) for a specific land based on the analysis of the affecting parameters (Temperature, Humidity, Soil Moisture) using machine learning. In this work, the author implemented Random Forest Classifier, Support Vector Machine, k-Nearest Neighbor, and Decision Tree for crop selection. The author trained these algorithms with the training dataset and later these algorithms were tested with the test dataset. The author compared the performances of all the tested methods to arrive at the best outcome. In this way best algorithm from the mention above is selected for crop prediction.