• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.03 seconds

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Detection of ST-T Episode Based on the Global Curvature of Isoelectric Level in ECG (ECG 신호의 global curvature를 이용한 ST-T 에피소드 검출)

  • Kang, Dong-Won;Jun, Dae-Gun;Lee, Kyoung-Joung;Yoon, Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.201-207
    • /
    • 2001
  • This paper describes an automated detection algorithm of ST-T episodes using global curvature which can connect the isoelectric level in ECG and can eliminate not only the slope of ST segment, but also difference of the baseline and global curve. This above method of baseline correction is very faster than the classical baseline correction methods. The optimal values of parameters for baseline correction were found as the value having the highest detection rate of ST episode. The features as input of backpropagation Neural Network were extracted from the whole ST segment. The European ST-T database was used as training and test data. Finally, ST elevation, ST depression and normal ST were classified. The average ST episode sensitivity and predictivity were 85.42%, 80.29%, respectively. This result shows the high speed and reliability in ST episode detection. In conclusion, the proposed method showed the possibility in various applications for the Holter system.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

The Effect of the Personalized Settings for CF-Based Recommender Systems (CF 기반 추천시스템에서 개인화된 세팅의 효과)

  • Im, Il;Kim, Byung-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.131-141
    • /
    • 2012
  • In this paper, we propose a new method for collaborative filtering (CF)-based recommender systems. Traditional CF-based recommendation algorithms have applied constant settings such as a reference group (neighborhood) size and a significance level to all users. In this paper we develop a new method that identifies optimal personalized settings for each user and applies them to generating recommendations for individual users. Personalized parameters are identified through iterative simulations with 'training' and 'verification' datasets. The method is compared with traditional 'constant settings' methods using Netflix data. The results show that the new method outperforms traditional, ordinary CF. Implications and future research directions are also discussed.

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Quality prediction method by using ZnO thin film deposition process modeling (ZnO 박막 증착 공정 모델링에 의한 품질 예측 기법)

  • Lim, Keun-Young;Chung, Doo-Yeon;Lee, Sang-Keuk;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.163-164
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex properties respectively. Therefore, finding optimal process conditions are very difficult and need to do many experiments. To predict ZnO deposition result, neural network was used. To gather training data, Si, GaAs, and Glass were used for substrates, and substrate temperature, work pressure, RF power were $50-500^{\circ}C$, 15 mTorr, and 180-210 W respectively, and the purity of target was ZnO 4N. For predicting the result of ZnO deposition process exactly, sensitivity analysis and drawing a response surface was added. The temperature of substrate was evaluated as a most important variable. As a result, neural network could verify the nonlinear and complex relations of variables and find the optimal process condition for good quality ZnO thin films.

  • PDF

Performance Improvement of Automatic Speech Segmentation and Labeling System (자동 음성분할 및 레이블링 시스템의 성능향상)

  • Hong Seong Tae;Kim Je-U;Kim Hyeong-Sun
    • MALSORI
    • /
    • no.35_36
    • /
    • pp.175-188
    • /
    • 1998
  • Database segmented and labeled up to phoneme level plays an important role in phonetic research and speech engineering. However, it usually requires manual segmentation and labeling, which is time-consuming and may also lead to inconsistent consequences. Automatic segmentation and labeling can be introduced to solve these problems. In this paper, we investigate a method to improve the performance of automatic segmentation and labeling system, where Spectral Variation Function(SVF), modification of silence model, and use of energy variations in postprocessing stage are considered. In this paper, SVF is applied in three ways: (1) addition to feature parameters, (2) postprocessing of phoneme boundaries, (3) restricting the Viterbi path so that the resulting phoneme boundaries may be located in frames around SVF peaks. In the postprocessing stage, positions with greatest energy variation during transitional period between silence and other phonemes were used to modify boundaries. In order to evaluate the performance of the system, we used 452 phonetically balanced word(PBW) database for training phoneme models and phonetically balanced sentence(PBS) database for testing. According to our experiments, 83.1% (6.2% improved) and 95.8% (0.9% improved) of phoneme boundaries were within 20ms and 40ms of the manually segmented boundaries, respectively.

  • PDF

Improvement of an Automatic Segmentation for TTS Using Voiced/Unvoiced/Silence Information (유/무성/묵음 정보를 이용한 TTS용 자동음소분할기 성능향상)

  • Kim Min-Je;Lee Jung-Chul;Kim Jong-Jin
    • MALSORI
    • /
    • no.58
    • /
    • pp.67-81
    • /
    • 2006
  • For a large corpus of time-aligned data, HMM based approaches are most widely used for automatic segmentation, providing a consistent and accurate phone labeling scheme. There are two methods for training in HMM. Flat starting method has a property that human interference is minimized but it has low accuracy. Bootstrap method has a high accuracy, but it has a defect that manual segmentation is required In this paper, a new algorithm is proposed to minimize manual work and to improve the performance of automatic segmentation. At first phase, voiced, unvoiced and silence classification is performed for each speech data frame. At second phase, the phoneme sequence is aligned dynamically to the voiced/unvoiced/silence sequence according to the acoustic phonetic rules. Finally, using these segmented speech data as a bootstrap, phoneme model parameters based on HMM are trained. For the performance test, hand labeled ETRI speech DB was used. The experiment results showed that our algorithm achieved 10% improvement of segmentation accuracy within 20 ms tolerable error range. Especially for the unvoiced consonants, it showed 30% improvement.

  • PDF

Impact of maternal crowd on the reproductive performance of an ecto-pupal parasitoid Nesolynx thymus (Hymenoptera: Eulophidae)

  • Siddaiah, Aruna Ambadahalli;Danagoudra, Manjunath
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.1
    • /
    • pp.128-134
    • /
    • 2014
  • Nesolynx thymus Girault (Hymenoptera: Eulophidae) is one among 20 hymenopteran parasitoids reported to attack the uzi fly, Exorista bombycis, which in turn infests the silkworm, Bombyx mori accounting a cocoon yield loss of 10-20%. A host of factors viz., age and size of host, age and size of parasitoid, availability of host, temperature and quality of host are reported to influence the reproductive efficiency of the parasitoids. In the present study an attempt was made to record the influence of foraging parasitoid density on their reproductive performance. Three day-old uzi pupae were offered to varying numbers (1 - 10) of 2 day old Nesolynx thymus adults for parasitization. The progeny production per pupa (84.44 - 132.77) increased significantly with increase in the number of foraging parasitoid adults (1 - 10) however, progeny production per female decreased. The sex ratio (M : F) (1:25.49 - 1:1.53) decreased significantly with increase in foraging parasitoid adults. The morphometric parameters except female abdomen width of first generation parasitoid showed significant negative correlation with number of foraging adults. However, correlation between the parasitoid size in first generation and their reproductive performance was nonsignificant.