• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.026 seconds

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.738-741
    • /
    • 2004
  • The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using Support Vector Regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.

  • PDF

A Study on Diagnosis of Transformers Aging Sate Using Wavelet Transform and Neural Network (이산웨이블렛 변환과 신경망을 이용한 변압기 열화상태 진단에 관한 연구)

  • 박재준;송영철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • In this papers, we proposed the new method in order to diagnosis aging state of transformers. For wavelet transform, Daubechies filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion skewness, kurtosis) about each acoustic emission signal. Also, these coefficients are used to identify normal and fault signal of internal partial discharge in transformer. As improved method for classification use neural network. Extracted statistical parameters are input into an back-propagation neural network. The number of neurons of hidden layer are obtained through Result of Cross-Validation. The network, after training, can decide whether the test signal is early aging state, alst aging state or normal state. In quantity analysis, capability of proposed method is superior to compared that of classical method.

  • PDF

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

Parameter Identification and Simulation of Light Aircraft Based on Flight Test (비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션)

  • 황명신;이정훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF

Automatic scoring system of EEG and quantitative evaluation of its visual interpretation

  • Nakamura, Masatoshi;Shibasaki, Hiroshi;Nishida, Shigeto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.967-971
    • /
    • 1989
  • A new system for automatic scoring of 'organization' of the EEG dominant rhythm was constructed and applied to 18 normal subjects and 15 patients. Organization parameters which best represented the 'organization' as judged by 5 neurologists' visual inspection were calculated and the automatic organization scoring was obtained by a linear regression of those organization parameters. Furthermore, values of the regression coefficients were used to study the characteristics of EEG interpretation by each neurologist, and this scoring technique can also be applied to the training of EEG interpretation.

  • PDF

Isolated Word Recognition Using Hidden Markov Models with Bounded State Duration (제한적 상태지속시간을 갖는 HMM을 이용한 고립단어 인식)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.756-764
    • /
    • 1995
  • In this paper, we proposed MLP(MultiLayer Perceptron) based HMM's(Hidden Markov Models) with bounded state duration for isolated word recognition. The minimum and maximum state duration for each state of a HMM are estimated during the training phase and used as parameters of constraining state transition in a recognition phase. The procedure for estimating these parameters and the recognition algorithm using the proposed HMM's are also described. Speaker independent isolated word recognition experiments using a vocabulary of 10 city names and 11 digits indicate that recognition rate can be improved by adjusting the minimum state durations.

  • PDF

Modified Phonetic Decision Tree For Continuous Speech Recognition

  • Kim, Sung-Ill;Kitazoe, Tetsuro;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.11-16
    • /
    • 1998
  • For large vocabulary speech recognition using HMMs, context-dependent subword units have been often employed. However, when context-dependent phone models are used, they result in a system which has too may parameters to train. The problem of too many parameters and too little training data is absolutely crucial in the design of a statistical speech recognizer. Furthermore, when building large vocabulary speech recognition systems, unseen triphone problem is unavoidable. In this paper, we propose the modified phonetic decision tree algorithm for the automatic prediction of unseen triphones which has advantages solving these problems through following two experiments in Japanese contexts. The baseline experimental results show that the modified tree based clustering algorithm is effective for clustering and reducing the number of states without any degradation in performance. The task experimental results show that our proposed algorithm also has the advantage of providing a automatic prediction of unseen triphones.

  • PDF

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Experimental Analysis about Influence Parameters at the Propagation of Large Arm’s Firing Noise (대구경 사격소음 전달 영향인자에 대한 실험적 분석)

  • Kim, Eung-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.412-419
    • /
    • 2016
  • The firing noise produced at artillery test range or military training ground is impulsive burst noise which energy is generated within tens of milliseconds and distributed an isolated burst of sound energy separated to one by one noise. The long range propagation of this noise is affected by a caliber of gun, amount of propellant, distance between source and receiver, ground and meteorological condition. In this paper, main influence parameters have been described based on experimental analysis of measured data. It is considered that this analysis result can be used as useful materials for study of effective firing noise management and development of propagation model.

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF