• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.032 seconds

Research of Gesture Recognition Technology Based on GMM and SVM Hybrid Model Using EPIC Sensor (EPIC 센서를 이용한 GMM, SVM 기반 동작인식기법에 관한 연구)

  • CHEN, CUI;Kim, Young-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.11-12
    • /
    • 2016
  • SVM (Support Vector machine) is powerful machine-learning method, and obtains better performance than traditional methods in the applications of muti-dimension nonlinear pattern classification. For the case of SVM model training and low efficiency in large samples, this paper proposes a combination of statistical parameters of the GMM-UBM (Universal Background Model) model. It is very effective to solve the problem of the large sample for the SVM training. The experiment is carried on four special dynamic hand gestures using the EPIC sensors. And the results show that the improved dynamic hand gesture recognition system has a high recognition rate up to 96.75%.

  • PDF

Short-Term Load Forecasting Using Neural Networks and the Sensitivity of Temperatures in the Summer Season (신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측)

  • Ha Seong-Kwan;Kim Hongrae;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.259-266
    • /
    • 2005
  • Short-term load forecasting algorithm using neural networks and the sensitivity of temperatures in the summer season is proposed. In recent 10 years, many researchers have focused on artificial neural network approach for the load forecasting. In order to improve the accuracy of the load forecasting, input parameters of neural networks are investigated for three training cases of previous 7-days, 14-days, and 30-days. As the result of the investigation, the training case of previous 7-days is selected in the proposed algorithm. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

USE OF TRAINING DATA TO ESTIMATE THE SMOOTHING PARAMETER FOR BAYESIAN IMAGE RECONSTRUCTION

  • SooJinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.175-182
    • /
    • 2001
  • We consider the problem of determining smoothing parameters of Gibbs priors for Bayesian methods used in the medical imaging application of emission tomographic reconstruction. We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood (ML) estimates of hyperparameters on observed training data, and argue the motivation for this approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the membrane prior.

  • PDF

A Ship Intelligent Anti-Collision Decision-Making Supporting System Based On Trial Manoeuvre

  • Zhuo, Yongqiang;Yao, Jie
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.176-183
    • /
    • 2006
  • A novel intelligent anti-collision decision-making supporting system is addressed in this paper. To obtain precise anti-collision information capability, an innovative neurofuzzy network is proposed and applied. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to train the parameters of the Fuzzy Inference System (FIS). The learning process is based on a hybrid learning algorithm and off-line training data. The training data are obtained by trial manoeuvre. This neurofuzzy network can be considered to be a self-learning system with the ability to learn new information adaptively without forgetting old knowledge. This supporting system can decrease ship operators' burden to deal with bridge data and help them to make a precise anti-collision decision.

  • PDF

Postural Balance Rehabilitation using Virtual Reality Technology (가상현실기술을 이용한 경사침대에서의 자세제어훈련에 관한 연구)

  • Lee, J.S.;Kim, H.S.;Chong, K.H.;Jeong, J.S.;Kim, D.W.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.107-110
    • /
    • 1996
  • We proposed a new system for the postural balance rehabilitation training. For the purpose, we used the virtual hiking system using virtual reality technology. We evaluated the system by measuring the parameters such as path deviation, path deviation velocity, cycling time, and head movement. From our results, we verified the usefulness of virtual reality technology in rehabilitation. Our results showed that this system was effective postural balance rehabilitation training device and might be useful as the clinical equipment.

  • PDF

Use of Training Data to Estimate the Smoothing Parameter for Bayesian Image Reconstruction

  • Lee, Soo-Jin
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • We consider the problem of determining smoothing parameters of Gibbs priors for Bayesian methods used in the medical imaging application of emission tomographic reconstruction. We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood(ML) estimates of hyperparameters on observed training data, and argue the motivation for this approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the membrane prior.

  • PDF

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

Control of Helicopter Training Simulator by Self Tuning Control Method

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Lee, Gun-You;Park, Soon-Sil;Oh, Sea-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.6-77
    • /
    • 2001
  • R/C helicopter has been used to several fields of military affairs, investigation, searching and toys because it has small size, hovering and vertical take-off characteristics etc. Therefore it needs more realizable control method. The paper introduces simulation and experimental results for control of a helicopter training simulator by self tuning control method. It is assumed that the helicopter is operated at the state of hovering motion and the model is induced. The self tuning control method incorporates the concepts of the well known internal model principle and annihilator polynomial for reference input and disturbance. The controller design is separated into two cases that the plant parameters are known or not. To realize ...

  • PDF

Predicting of compressive strength of recycled aggregate concrete by genetic programming

  • Abdollahzadeh, Gholamreza;Jahani, Ehsan;Kashir, Zahra
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • This paper, proposes 20 models for predicting compressive strength of recycled aggregate concrete (RAC) containing silica fume by using gene expression programming (GEP). To construct the models, experimental data of 228 specimens produced from 61 different mixtures were collected from the literature. 80% of data sets were used in the training phase and the remained 20% in testing phase. Input variables were arranged in a format of seven input parameters including age of the specimen, cement content, water content, natural aggregates content, recycled aggregates content, silica fume content and amount of superplasticizer. The training and testing showed the models have good conformity with experimental results for predicting the compressive strength of recycled aggregate concrete containing silica fume.