Use of Training Data to Estimate the Smoothing Parameter for Bayesian Image Reconstruction

  • Lee, Soo-Jin (Department of Electronic Engineering Paichai University)
  • Published : 2002.12.20

Abstract

We consider the problem of determining smoothing parameters of Gibbs priors for Bayesian methods used in the medical imaging application of emission tomographic reconstruction. We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood(ML) estimates of hyperparameters on observed training data, and argue the motivation for this approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the membrane prior.

본 논문에서는 의료영상의 응용분야로서 방출전산화단층 영상에 사용되는 베이지안 방법을 위한 Gibbs 사전정보의 평활 파라미터를 결정하는 문제를 다룬다. 특히, 광역 하이퍼파라미터(평활 파라미터)가 해의 편향과 분산의 균형을 조절하는 단순 평활사전정보(일명 멤브레인)를 연구 대상으로 한다. 본 논문에서 사용된 방법은 관측된 훈련데이터에 ML 방법을 적용한 하이퍼파라미터 추정법에 기반을 두며, 이러한 접근방법에 대한 동기에 대하여도 논한다. 멤브레인 사전정보를 위한 평활 파라미터의 경우 단순한 ML 추정법을 적용하여도 파라미터가 쉽게 추정될 수 있음을 보인다.

Keywords