• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.026 seconds

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Enhancing Occlusion Robustness for Vision-based Construction Worker Detection Using Data Augmentation

  • Kim, Yoojun;Kim, Hyunjun;Sim, Sunghan;Ham, Youngjib
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.904-911
    • /
    • 2022
  • Occlusion is one of the most challenging problems for computer vision-based construction monitoring. Due to the intrinsic dynamics of construction scenes, vision-based technologies inevitably suffer from occlusions. Previous researchers have proposed the occlusion handling methods by leveraging the prior information from the sequential images. However, these methods cannot be employed for construction object detection in non-sequential images. As an alternative occlusion handling method, this study proposes a data augmentation-based framework that can enhance the detection performance under occlusions. The proposed approach is specially designed for rebar occlusions, the distinctive type of occlusions frequently happen during construction worker detection. In the proposed method, the artificial rebars are synthetically generated to emulate possible rebar occlusions in construction sites. In this regard, the proposed method enables the model to train a variety of occluded images, thereby improving the detection performance without requiring sequential information. The effectiveness of the proposed method is validated by showing that the proposed method outperforms the baseline model without augmentation. The outcomes demonstrate the great potential of the data augmentation techniques for occlusion handling that can be readily applied to typical object detectors without changing their model architecture.

  • PDF

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.

FedGCD: Federated Learning Algorithm with GNN based Community Detection for Heterogeneous Data

  • Wooseok Shin;Jitae Shin
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • Federated learning (FL) is a ground breaking machine learning paradigm that allow smultiple participants to collaboratively train models in a cloud environment, all while maintaining the privacy of their raw data. This approach is in valuable in applications involving sensitive or geographically distributed data. However, one of the challenges in FL is dealing with heterogeneous and non-independent and identically distributed (non-IID) data across participants, which can result in suboptimal model performance compared to traditionalmachine learning methods. To tackle this, we introduce FedGCD, a novel FL algorithm that employs Graph Neural Network (GNN)-based community detection to enhance model convergence in federated settings. In our experiments, FedGCD consistently outperformed existing FL algorithms in various scenarios: for instance, in a non-IID environment, it achieved an accuracy of 0.9113, a precision of 0.8798,and an F1-Score of 0.8972. In a semi-IID setting, it demonstrated the highest accuracy at 0.9315 and an impressive F1-Score of 0.9312. We also introduce a new metric, nonIIDness, to quantitatively measure the degree of data heterogeneity. Our results indicate that FedGCD not only addresses the challenges of data heterogeneity and non-IIDness but also sets new benchmarks for FL algorithms. The community detection approach adopted in FedGCD has broader implications, suggesting that it could be adapted for other distributed machine learning scenarios, thereby improving model performance and convergence across a range of applications.

CRFNet: Context ReFinement Network used for semantic segmentation

  • Taeghyun An;Jungyu Kang;Dooseop Choi;Kyoung-Wook Min
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.822-835
    • /
    • 2023
  • Recent semantic segmentation frameworks usually combine low-level and high-level context information to achieve improved performance. In addition, postlevel context information is also considered. In this study, we present a Context ReFinement Network (CRFNet) and its training method to improve the semantic predictions of segmentation models of the encoder-decoder structure. Our study is based on postprocessing, which directly considers the relationship between spatially neighboring pixels of a label map, such as Markov and conditional random fields. CRFNet comprises two modules: a refiner and a combiner that, respectively, refine the context information from the output features of the conventional semantic segmentation network model and combine the refined features with the intermediate features from the decoding process of the segmentation model to produce the final output. To train CRFNet to refine the semantic predictions more accurately, we proposed a sequential training scheme. Using various backbone networks (ENet, ERFNet, and HyperSeg), we extensively evaluated our model on three large-scale, real-world datasets to demonstrate the effectiveness of our approach.

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.