• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.031 seconds

Aerodynamic Characteristics for various front shapes of High Speed Train (고속열차의 선두부 형상에 따른 공력특성 변화)

  • Lee S. C.;Kim S. L.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.49-54
    • /
    • 1995
  • A numerical analysis on the effect of the front shape on the aerodynamic characteristics of HST model is made, using FVM based general purpose 3D Navier-Stokes eq. solver, TURBO-3D program. Numerical solutions are compared with each case of different front shape for HST model. The result shows a good quantitative aerodynamic characteristic tendencies for variation of front shape of HST. Thus it may be used as a basis in the design of the shape of real HST.

  • PDF

DialogStudio: A Spoken Dialog System Workbench (음성대화시스템 워크벤취로서의 DialogStudio 개발)

  • Jung, Sang-Keun;Lee, Cheong-Jae;Lee, Gary Geun-Bae
    • MALSORI
    • /
    • no.63
    • /
    • pp.101-112
    • /
    • 2007
  • Spoken dialog system development includes many laborious and inefficient tasks. Since there are many components such as speech recognition, language understanding, dialog management and knowledge management in a spoken dialog system, a developer should take an effort to edit corpus and train each model separately. To reduce a cost for editing corpus and training each model, we need more systematic and efficient working environment. For the working environment, we propose DialogStudio as a spoken dialog system workbench.

  • PDF

Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease (관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가)

  • Park, Sung Jun;Choi, Seung Yeon;Kim, Young Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.

A study on the on-board centered train control system to enhance efficiency of low-density railway line (철도 저밀도노선 효율성 향상을 위한 차상중심 열차제어시스템 연구)

  • Jo, Hyun-Jeong;Baek, Jong-Hyen;Kim, Gon-Yop;Lee, Kang-Mi;Kim, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5434-5441
    • /
    • 2012
  • In the low-density branch line section of domestic railway, the necessity for development of new concept on-board centered train control system which can control the trackside equipment directly from the on-board of train is on the rise since it is problematic in the aspect of efficiency because of its operation in deficits, etc. in accordance with the operation of high-priced wayside equipment being applied to main lines. Accordingly, this paper proposed an on-board control system which can minimize wayside equipment and replace the existing system with it simultaneously by grafting the advanced domestic Information & Communication Technology(ICT), and presented contents of performing confirmation of function through results of concept and detailed design and by building model test environments.

Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis

  • Liu, Quanmin;Liu, Linya;Chen, Huapeng;Zhou, Yunlai;Lei, Xiaoyan
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.291-306
    • /
    • 2020
  • The noise from the elevated lines of rail transit has become a growing problem. This paper presents a new method for the rapid prediction of the structure-borne noise from steel or composite bridges, based on the receptance and Statistical Energy Analysis (SEA), which is essential to the study of the generation mechanism and the design of a low-noise bridge. First, the vertical track-bridge coupled vibration equations in the frequency domain are constructed by simplifying the rail and the bridge as an infinite Timoshenko beam and a finite Euler-Bernoulli beam respectively. Second, all wheel/rail forces acting upon the track are computed by taking a moving wheel-rail roughness spectrum as the excitation to the train-track-bridge system. The displacements of rail and bridge are obtained by substituting wheel/rail forces into the track-bridge coupled vibration equations, and all spring forces on the bridge are calculated by multiplying the stiffness by the deformation of each spring. Then, the input power to the bridge in the SEA model is derived from spring forces and the bridge receptance. The vibration response of the bridge is derived from the solution to the power balance equations of the bridge, and then the structure-borne noise from the bridge is obtained. Finally, a tri-span continuous steel-concrete composite bridge is taken as a numerical example, and the theoretical calculations in terms of the vibration and noise induced by a passing train agree well with the field measurements, verifying the method. The influence of various factors on wheel/rail and spring forces is investigated to simplify the train-track-bridge interaction calculation for predicting the vibration and noise from steel or composite bridges.

Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges (고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발)

  • 김만철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2003
  • Railway bridges are subject to dynamic loads generated by the interaction between moving vehicles and the bridge structures. These dynamic loads result in response fluctuations in bridge members. To investigate the real dynamic behavior of the bridge, therefore, a number of analytical and experimental Investigations should be carried out. In this paper, a train/track/bridge interaction analysis program for evaluating the dynamic characteristics of bridges due to KTX operation in terms of structural safety, operational safety and passenger comfort is developed. To build a practical model of train/track/bridge, Hertzian spring for wheel/rail contact modeling and Winkler element for ballast are applied. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi-three dimensional analysis. To verify the developed Program, comparison has been made between the measured results and those of simulation of the typical PSC box bridge(2@40m=80m) of the KHSR bridges.

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

Reliability Analysis for Train Control System by Software Fault Tolerance Techniques (소프트웨어 결함허용 기법에 의한 열차제어시스템 신뢰도 분석)

  • Suh, Seog-Chul;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1043-1048
    • /
    • 2009
  • PES (Programmable Electronic System) is used by software development for the train control system. PES has been widely used in real world and consists of hardware, firmware and application software. The PES are easily apply to many applications because its implementation has high flexibility. Many safety critical functions are realized through software in safety critical system. Normally, it is difficult to detect failures for PES system because the PES is too sophisticated to identify sources of the failure. So, the reliability analysis is needed by using software fault tolerance techniques. Currently, there are the recovery block, distributed recovery block, N-version programming, N self-checking programming in fault tolerance techniques. In this paper, the models of recovery block and N-version programming in software fault tolerance techniques are suggested by using the Markov model. Also, the reliability in the train control system is analyzed through changing time. The fault occupancy rates of the program, adjustment test and voter are stationary. So, the relation between time and reliability is presented by using Matlab program. In the result of reliability, the reliability of recovery block is more high than N-version programming in case of the same number of substitution block.

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Extracting Modal Parameters of Railway Bridge under the Action of High-speed Train Using TDD Technique (TDD기법을 이용한 고속철도 교량의 동특성 추출)

  • Kim, Byeong Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.761-771
    • /
    • 2008
  • When the crossing frequency of a train meets the natural frequency of a railway bridge, the bridge is bound to become resonant. There are few available time response samples involving a train that passes a bridge at high speed. Very effective modal-parameter extraction techniques for such special high-speed railway bridge conditions are introduced in this paper. Utilizing the cross-correlations of the free-vibration responses after the train passes, mode shapes and the temporal modal parameters (e.g., natural frequency and damping ratio) are extracted using the TDD and SI techniques, respectively. This approach has been applied to a two-span steel composite bridge in the Kyung-Bu high-speed railway system. The estimation results were compared with those obtained using the existing methods. The results fully coincide with those that were extracted using the existing aforementioned technique.