• Title/Summary/Keyword: train model

Search Result 1,719, Processing Time 0.023 seconds

Curvature ductility of confined HSC beams

  • Bouzid Haytham;Idriss Rouaz;Sahnoune Ahmed;Benferhat Rabia;Tahar Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.579-588
    • /
    • 2024
  • The present paper investigates the curvature ductility of confined reinforced concrete (RC) beams with normal (NSC) and high strength concrete (HSC). For the purpose of predicting the curvature ductility factor, an analytical model was developed based on the equilibrium of internal forces of confined concrete and reinforcement. In this context, the curvatures were calculated at first yielding of tension reinforcement and at ultimate when the confined concrete strain reaches the ultimate value. To best simulate the situation of confined RC beams in flexure, a modified version of an ancient confined concrete model was adopted for this study. In order to show the accuracy of the proposed model, an experimental database was collected from the literature. The statistical comparison between experimental and predicted results showed that the proposed model has a good performance. Then, the data generated from the validated theoretical model were used to train the artificial neural network (ANN) prediction model. The R2 values for theoretical and experimental results are equal to 0.98 and 0.95, respectively which proves the high performance of the ANN model. Finally, a parametric study was implemented to analyze the effect of different parameters on the curvature ductility factor using theoretical and ANN models. The results are similar to those extracted from experiments, where the concrete strength, the compression reinforcement ratio, the yield strength, and the volumetric ratio of transverse reinforcement have a positive effect. In contrast, the ratio and the yield strength of tension reinforcement have a negative effect.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Study of Influence of Wheel Unloading on Derailment Coefficient of Rolling Stock (철도차량의 윤중 감소가 탈선계수에 미치는 영향 연구)

  • Koo, Jeong Seo;Oh, Hyun Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • A new theoretical derailment coefficient model of wheel-climb derailment is proposed to consider the influence of wheel unloading. The derailment coefficient model is based on the theoretical derailment model of a wheelset that was developed to predict the derailment induced by train collisions. Presently, in domestic derailment regulations, a derailment coefficient of 0.8 is allowable using Nadal's formula, which is for a flange angle of $60^{\circ}$ and a friction coefficient of 0.3. However, theoretical studies focusing on different flange angles to justify the derailment coefficient of 0.8 have not been conducted. Therefore, this study theoretically explains a derailment coefficient of 0.8 using the proposed derailment coefficient model. Furthermore, wheel unloading of up to 50% is accepted without a clear basis. Accordingly, the correlation between a wheel unloading of 50% and a derailment coefficient of 0.8 is confirmed by using the proposed derailment coefficient model. Finally, the validity of the proposed derailment coefficient model is demonstrated through dynamic simulations.

A Study on an Efficient Double-fleet Operation of the Korean High Speed Rail (한국 고속철도의 효율적 중련편성 운영방법에 대한 연구)

  • Oh, Seog-Moon;Sohn, Moo-Sung;Choi, In-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.742-750
    • /
    • 2007
  • This paper presents a mathematical model for a double-fleet operation in Korean high speed rail (HSR). KORAIL has a plan to launch new HSR units in 2010, which are composed of 10 railcars. The double-fleet operation assigns a single-unit or two-unit fleet to a segment, accommodating demand fluctuation. The proposed model assumes stochastic demand and uses chance-constrained constraints to assure a preset service level. It can be used in the tactical planning stage of the rail management as it includes several real-world conditions, such as the capacities of the infra-structures and operational procedures. In the solution approach, the expected revenue in the objective function is linearized by using expected marginal revenue, and the chance-constrained constraints are linearized by assuming that demands are normally distributed. Subsequently, the model can be solved by a mixed-integer linear programming solver fur small size problems. The test results of the model applied to Friday morning train schedules for one month sample data from KTX operation in 2004 shows that the proposed model could be utilized to determine the effectiveness of double-fleet operation, which could significantly increase the expected profit and seat utilization rates when properly maneuvered.

Speech detection from broadcast contents using multi-scale time-dilated convolutional neural networks (다중 스케일 시간 확장 합성곱 신경망을 이용한 방송 콘텐츠에서의 음성 검출)

  • Jang, Byeong-Yong;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.89-96
    • /
    • 2019
  • In this paper, we propose a deep learning architecture that can effectively detect speech segmentation in broadcast contents. We also propose a multi-scale time-dilated layer for learning the temporal changes of feature vectors. We implement several comparison models to verify the performance of proposed model and calculated the frame-by-frame F-score, precision, and recall. Both the proposed model and the comparison model are trained with the same training data, and we train the model using 32 hours of Korean broadcast data which is composed of various genres (drama, news, documentary, and so on). Our proposed model shows the best performance with F-score 91.7% in Korean broadcast data. The British and Spanish broadcast data also show the highest performance with F-score 87.9% and 92.6%. As a result, our proposed model can contribute to the improvement of performance of speech detection by learning the temporal changes of the feature vectors.

Prediction of Menu selection on Touch-screen Using A Cognitive Architecture: ACT-R (ACT-R을 이용한 터치스크린 메뉴 선택 수행 예측)

  • Min, Jung-Sang;Jo, Seong-Sik;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.907-914
    • /
    • 2010
  • Cognitive model, that is cognitive architecture, is the model expressed with computer program to show the process how human solve a certain problem and it is continuously under investigation through various fields of study such as cognitive engineering, computer engineering, and cognitive psychology. In addition, the much extensive applicability of cognitive model usually helps it to be used for quantitative prediction of human Behavior or Natural programming of human performance in many HCI areas including User Interface Usability, artificial intelligence, natural programming language and also Robot engineering. Meanwhile, when a system designed, an usability test about conceptual design of interface is needed and in this case, analysis evaluation using cognitive model like GOMS or ACT-R is much more effective than empirical evaluation which naturally needs products and subjects. In particular, if we consider the recent trend of very short-end term between a previous technology development and the next new one, it would take time and much efforts to choose subjects and train them in order to conduct usability test which is repeatedly followed in the process of a system development and this finally would bring delays of development of a new system. In this study, we predicted quantitatively the human behavior processes which contains cognitive processes for menu selection in touch screen interface through ACT-R, one of the common method of usability test. Throughout the study, it was shown that the result using cognitive model was equal with the result using existing empirical evaluation. And it is expected that cognitive model has a possibility not only to be used as an effective methodology for evaluation of HCI products or system but also to contribute the activation of HCI cognitive modeling in Korea.

A Time-Series Data Prediction Using TensorFlow Neural Network Libraries (텐서 플로우 신경망 라이브러리를 이용한 시계열 데이터 예측)

  • Muh, Kumbayoni Lalu;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.79-86
    • /
    • 2019
  • This paper describes a time-series data prediction based on artificial neural networks (ANN). In this study, a batch based ANN model and a stochastic ANN model have been implemented using TensorFlow libraries. Each model are evaluated by comparing training and testing errors that are measured through experiment. To train and test each model, tax dataset was used that are collected from the government website of indiana state budget agency in USA from 2001 to 2018. The dataset includes tax incomes of individual, product sales, company, and total tax incomes. The experimental results show that batch model reveals better performance than stochastic model. Using the batch scheme, we have conducted a prediction experiment. In the experiment, total taxes are predicted during next seven months, and compared with actual collected total taxes. The results shows that predicted data are almost same with the actual data.

Context-Adaptive Intra Prediction Model Training and Its Coding Performance Analysis (문맥적응적 화면내 예측 모델 학습 및 부호화 성능분석)

  • Moon, Gihwa;Park, Dohyeon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.332-340
    • /
    • 2022
  • Recently, with the development of deep learning and artificial neural network technologies, research on the application of neural network has been actively conducted in the field of video coding. In particular, deep learning-based intra prediction is being studied as a way to overcome the performance limitations of the existing intra prediction techniques. This paper presents a method of context-adaptive neural network-based intra prediction model training and its coding performance analysis. In other words, in this paper, we implement and train a known intra prediction model based on convolutional neural network (CNN) that predicts a current block using contextual information from reference blocks. Then, we integrate the trained model into HM16.19 as an additional intra prediction mode and evaluate the coding performance of the trained model. Experimental results show that the trained model gives 0.28% BD-rate bit saving over HEVC in All Intra (AI) coding mode. In addition, the coding performance change of training considering block partition is also presented.

Application of Deep Learning-Based Nuclear Medicine Lung Study Classification Model (딥러닝 기반의 핵의학 폐검사 분류 모델 적용)

  • Jeong, Eui-Hwan;Oh, Joo-Young;Lee, Ju-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.