• Title/Summary/Keyword: train control systems

Search Result 423, Processing Time 0.033 seconds

Risk Analysis Method Applied to Train Control Systems for Safety Assurance (열차제어시스템 안전성 확보를 위한 위험도 분석 방법 적용)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • Failures of equipments for train control systems are linked directly to extensive damages of human lives or financial losses from the increasing uses of train control equipments utilizing computers. Then safety activities for assuring safety and reliability are needed during the system life-cycle. Risk analysis is important phase to increase safety from determining the risk presented by the identified hazard. In this paper, we investigated several methods for risk estimation of safety activities, and then we drew a comparison between original methods to suggest optimized one in the application to train control systems. In the result of the comparison, we had plan to propose the risk analysis method called Best-Practice(BP) risk method combining advantages of the qualitative and the quantitative analysis. In addition, we attempted to apply the BP-risk method to domestic train control systems handling in Korea.

Analysis of Interoperability Test between a Different Kind of Train Control System (이종(異種) 열차제어시스템간의 상호운영성 시험 분석)

  • Baek, Jong Hyen;Seul, Nam-O
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • In this paper, for the purpose of improving the future domestic train control systems and securing interoperability according to the global development trends of train control systems, we present the test results of interoperability between wayside train control system installed in existed line, and the onboard train control system. Due to the safety-critical characteristics of train systems, the site test in the section where the wayside equipment is installed, leads to a danger against safety. Therefore, by way of constructing a simulation environment of train control systems, we confirm the T/R data systems of the equipment for interoperability and test the interoperability by applying these systems to onboard equipment.

Analysis of the Formal Specification Application for Train Control Systems

  • Jo, Hyun-Jeong;Yoon, Yong-Ki;Hwang, Jong-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.87-92
    • /
    • 2009
  • Many critical control systems are developed using formal methods. When software applied to such systems is developed, the employment of formal methods in the software requirements specification and verification will provide increased assurance for such applications. Earlier errors of overlooked requirement specification can be detected using the formal specification method. Also, the testing and full verification to examine all reachable states using model checking to undertake formal verification are able to be completed. In this paper, we proposed an eclectic approach to incorporate Z(Zed) formal language and 'Statemate MAGNUM', formal method tools using Statechart. Also we applied the proposed method to train control systems for the formal requirement specification and analyzed the specification results.

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.

Development and Test of Automatic/Driverless Operation System for Standardized EMU (표준전동차 자동/무인운전장치 개발 및 주행시험)

  • 안태기;이수길;한성호;이관섭
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.154-160
    • /
    • 2000
  • The automatic/driverless operation which are great important techniques in metro railway are required to increase higher safety, greater reliability, and transport capacity. To satisfy such demands, we must have the system design and testing technique for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control and Monitoring System), ATO(Automatic Train Operation), ATC(Automatic Train Control), and TWC(Train to Wayside Communication). These sub-systems must be interfacing with not only each others but also the signal system on the ground. We tested the train control system on Test line that has been developed on the basis of the standardized type EMU for korea railway systems. This test line which is located in Sangju, have been constructed for testing 7 & 8 line of Seoul Metro railway.

  • PDF

Train interval control and train-centric distributed interlocking algorithm for autonomous train driving control system (열차자율주행제어시스템을 위한 간격제어와 차상중심 분산형 연동 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Choi, Hyeonyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.1-9
    • /
    • 2016
  • Train control systems have changed from wayside electricity-centric to onboard communications-centric. The latest train control system, the CBTC system, has high efficiency for interval control based on two-way radio communications between the onboard and wayside systems. However, since the wayside system is the center of control, the number of input trains to allow a wayside system is limited, and due to the cyclic-path control flows between onboard and wayside systems, headway improvement is limited. In this paper, we propose a train interval-control and train-centric distributed interlocking algorithm for an autonomous train-driving control system. Because an autonomous train-driving control system performs interval and branch control onboard, both tracks and switches are shared resources as well as semaphore elements. The proposed autonomous train-driving control performs train interval control via direct communication between trains or between trains and track-side apparatus, instead of relying on control commands from ground control systems. The proposed interlocking algorithm newly defines the semaphore scheme using a unique key for the shared resource, and a switch that is not accessed at the same time by the interlocking system within each train. The simulated results show the proposed autonomous train-driving control system improves interval control performance, and safe train control is possible with a simplified interlocking algorithm by comparing the proposed train-centric distributed interlocking algorithm and various types of interlock logic performed in existing interlocking systems.

On the Design of Radio System for Communication Based Train Control System(1) (무선통신기반 열차에어시스템의 무선시스템 설계에 대한 검토(1))

  • Choi Kyu-Hyoung;Yoon Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1291-1296
    • /
    • 2004
  • CBTC(Communication Based Train Control) System has many superior train control performances than conventional track-circuit-based train control system with higher train operation efficiency, and less installation and maintenance cost. It is expected that CBTC will replace the conventional train control systems in near future. As CBTC has different mechanisms from conventional track-circuit-based train control systems in identifying train positions, and communicating information between train and ground facility, we have to pay a carful attention to making the interface between CBTC equipments and other signalling devices. This paper provides the construction of the interface between CBTC train-born equipment and other train control equipments including ATO, TCMS, brake controller, door controller.

  • PDF

Automatic Train Control (ATC) System Development through Application of Reverse and Re-Systems Engineering Process (역공학 및 재공학 시스템엔지니어링 프로세스 적용을 통한 무인열차자동제어시스템 개발)

  • 이중윤;박영원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.836-843
    • /
    • 2003
  • The automatic train control (ATC) system development project for the Automated Guideway Transit (AGT) system has high technical risk because the system is unmanned train control system using wireless technology which was unprecedented in train control industry of Korea. To overcome the technical risk during concept design phase of the ATC system development project, the integrated product team(IPT) carried out a reverse and reengineering process using a systems engineering design model. The generic systems engineering process is incorporated in the both reverse and reengineering process. As a result of the systems engineering effort, the IPT has built top layer systems engineering design model of the ATC subsystem. The purpose of this paper is to deliver the reverse and reengineering process which was used to develop the systems engineering design model of ATC system using a computer aided systems engineering tool. This study also shows that the model based reverse and reengineering process can reduce the technical risk by identifying the differences of requirement, functional and physical architecture between a reference system and a target system.

Design of Optimal control for Automatic Train Operation system in EMU

  • Han, Seong-Ho;Lee, Su-Gil;Kim, Soo-Gon;Lee, Woo-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.4-47
    • /
    • 2001
  • The automatic-driverless operation, a very important technique for metro railways, is necessary for achieving higher safety, greater reliability, and bigger transport capacity. To achieve these things, we have to build up the system design and tasting techniques for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control and Monitoring System), ATO(automatic train Operation), ATC(Automatic train Control), and TWC(Train to wayside communication). These sub-systems should interface not only with each other but also between the sub-systems and the signal system on the ground. For the saving of energy, we designed coasting strategy of ATO system, In this paper, we developed ATO system and tested on the test line and ...

  • PDF

On the Design of Radio System for Communication Based Train Control System(2) (무선통신기반 열차제어시스템의 무선시스템 설계에 대한 검토(2))

  • Choi Kyu-Hyoung;Yoon Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1297-1302
    • /
    • 2004
  • CBTC(Communication Based Train Control) System has many superior train control performances than conventional track-circuit-based train control system with higher train operation efficiency, and less installation and maintenance cost. It is expected that CBTC will replace the conventional train control systems in near future. As CBTC has different mechanisms from conventional track-circuit-based train control systems in identifying train positions, and communicating information between train and ground facility, we have to pay a earful attention to making the interface between CBTC equipments and other signalling devices. This paper provides the construction of the interface between CBTC equipment and other signalling equipments such as TTC(Total traffic Control) system. ATO. electronic interlocking devices.

  • PDF