• Title/Summary/Keyword: traffic routes

Search Result 326, Processing Time 0.025 seconds

Vulnerability Evaluation by Road Link Based on Clustering Analysis for Disaster Situation (재난·재해 상황을 대비한 클러스터링 분석 기반의 도로링크별 취약성 평가 연구)

  • Jihoon Tak;Jungyeol Hong;Dongjoo Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.29-43
    • /
    • 2023
  • It is necessary to grasp the characteristics of traffic flow passing through a specific road section and the topological structure of the road in advance in order to quickly prepare a movement management strategy in the event of a disaster or disaster. It is because it can be an essential basis for road managers to assess vulnerabilities by microscopic road units and then establish appropriate monitoring and management measures for disasters or disaster situations. Therefore, this study presented spatial density, time occupancy, and betweenness centrality index to evaluate vulnerabilities by road link in the city department and defined spatial-temporal and topological vulnerabilities by clustering analysis based on distance and density. From the results of this study, road administrators can manage vulnerabilities by characterizing each road link group. It is expected to be used as primary data for selecting priority control points and presenting optimal routes in the event of a disaster or disaster.

The Impact of Urban Characteristics on Carbon Emissions of Buildings in Seoul: Application of Spatial Regression Analysis (도시특성이 건축물의 탄소배출에 미치는 영향에 관한 연구: 서울시 424개 행정동에 대한 공간회귀분석의 적용)

  • Hang Hun Jo;Heung Soon Kim
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.77-92
    • /
    • 2023
  • The aim of the study is to analyze urban characteristics that affect carbon emissions of buildings. The analysis was conducted at the level of 424 administrative districts in Seoul. The main variables used in the analysis were energy consumption and carbon emissions of buildings published in the Seoul Metropolitan Government's energy information platform 2021. It was found that carbon emissions per unit building were high in Jongno, Gangnam, Guro, and Mok-dong. A regression analysis using the spatial lag model (SLM) identifies that the variables that affect the carbon emissions of buildings were; commercial, educational, business and industrial facility variables as built environment factor; number of residents; traffic volume, number of bus routes and number of subway stations as transportation facilities factors; and environmental factors such as green area and river area.

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

2019 Incheon FIR Aerial Collision Risk Analysis (2019년도 인천 FIR 공중 충돌 위험도 분석)

  • Jae-young Ryu;Hyeonwoong Lee;Bae-Seon Park;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.476-483
    • /
    • 2021
  • In order to maintain the safety of the airspace with ever increasing traffic volume, it is necessary to thoroughly analyze the collision risk with the current data. In this study, collision risk analysis was conducted using Detect and Avoid (DAA) Well-Clear (DWC) metrics, risk induces developed for the DAA systems of unmanned aerial vehicles. All flights in year 2019 that flew within the Incheon Flight Information Region (FIR) boundary were analyzed using the recorded Automatic Dependent Surveillance-Broadcast(ADS-B) data. High risk regions as well as trends by airports and seasons were identified. The results indicate that the risk is higher around the congested area near Incheon International Airport and Gimpo International Airport. Seasonally, the risk was highest in August that coincides with the Summer vacation period. The result will be useful for the baseline data for various aviation safety enhancement activities such as revision of routes and procedures and training of the field specialists.

A Study on Vertiport Location and Corridor Selections using GIS Analysis in Busan Area (GIS 분석을 활용한 부산권 버티포트 위치 및 회랑 선정에 관한 연구)

  • ChanHee Moon;HaYoung Shi;TaeWan Ku;BeomSoo Kang
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.46-53
    • /
    • 2023
  • As urban traffic congestion and environmental pollution are becoming significant issues in major cities, Urban Air Mobility (UAM) is gaining attention as an efficient solution. In this study, we conducted a geographic information system (GIS)-based spatial analysis and clustering algorithm considering the actual data of the terrain and infrastructure in the Busan area, through which we were able to select the location of vertiports and corridors (flight routes) for the UAM operation. Based on the Gimhae International Airport, which is expected to be the center of the UAM infrastructure system in the Busan region, we judged that three vertiport locations in the target area were suitable. Subsequently, we used the A* (A-star) algorithm considering Ground Risk to select a flight path that minimized both risk and distance. Through this, we confirmed a risk reduction effect of 80.168% compared to the minimum distance route.

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.

Drivers Detour Decision Factor Analysis with Combined Method of Decision Tree and Neural Network Algorithm (의사결정나무와 신경망 모형 결합에 의한 운전자 우회결정요인 분석)

  • Kang, Jin-Woong;Kum, Ki-Jung;Son, Seung-Neo
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.167-176
    • /
    • 2011
  • This study's purpose is to analyse factors of determination about detouring for makinga standard model in regard of unfavorableness and uncertainty when unspecified individual recipients make a decision at the time of course detour. In order to achieve this, we surveyed SP investigation whether making a detour or not for drivers as a target who take a high way and National highway. Based on this result, we analysed detour determination factors of drivers, establishing a combination model of Decision Tree and Neural Network model. The result demonstrates the effected factors on drivers' detour determination are in ordering of the recognition of alternative routevs, reliable and frequency of using traffic information, frequency of transition routes and age. Moreover, from the outcome in comparison with an existing model and prediction through undistributed data, the rate of combination model 8.7% illustrates the most predictable way in contrast with logit model 12.8%, and Individual Model of Decision Tree 13.8% which are existed. This reveals that the analysis of drivers' detour determination factors is valid to apply. Hence, overall study considers as a practical foundation to make effective detour strategies for increasing the utility of route networking and dispersion in the volume of traffic from now on.

Developing a Program to Pre-process AIS Data and applying to Vung Tau Waterway in Vietnam - Based on the IWRAP Mk2 program - (AIS 데이터 전처리 프로그램의 개발 및 Vung Tau 해역에의 적용 - IWRAP Mk2 프로그램을 기초로 -)

  • Nguyen, Xuan Thanh;Park, Young-Soo;Park, Jin-Soo;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.345-351
    • /
    • 2013
  • The IWRAP program (Inland Waterway Risk Assessment Program) is a useful program for risk assessment of a waterway. However, in the basic version, the function which is used to import AIS data is not included. So users have to prepare the data and input to the program manually. And not all waterways have enough statistical data about passing vessels especially in developing countries as Vietnam. This paper studies the development of a program to pre-process AIS data for using the IWRAP Mk2 program basic version. In addition, it provides users basic information about marine traffic in a waterway such as routes layout, number of passages at a gate classified by type, size and time. The developed program, named TOAIS (Total AIS), was successfully used to pre-process AIS data collected in the Vung Tau waterway-Vietnam. As a result, the IWRAP Mk2 program basic version using data pre-processed from TOAIS could effectively assess the risk of collision in this waterway.

Collision Avoidance and Deadlock Resolution for AGVs in an Automated Container Terminal (자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안)

  • Kang, Jae-Ho;Choi, Lee;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.25-43
    • /
    • 2005
  • In modern automated container terminals, automated guided vehicle (AGV) systems are considered a viable option for the horizontal tansportation of containers between the stacking yard and the quayside cranes. AGVs in a container terminal move rather freely and do not follow fixed guide paths. For an efficient operation of such AGVs, however, a sophisticated traffic management system is required. Although the flexible routing scheme allows us to find the shortest possible routes for each of the AGVs, it may incur many coincidental encounters and path intersections of the AGVs, leading to collisions or deadlocks. However, the computational cost of perfect prediction and avoidance of deadlocks is prohibitively expensive for a real time application. In this paper, we propose a traffic control method that predicts and avoids some simple, but at the same time the most frequently occurring, cases of deadlocks between two AGVs. More complicated deadlock situations are not predicted ahead of time but detected and resolved after they occur. Our method is computationally cheap and readily applicable to real time applications. The efficiency and effectiveness of our proposed methods have been validated by simulation.

  • PDF

Long-Term Arrival Time Estimation Model Based on Service Time (버스의 정차시간을 고려한 장기 도착시간 예측 모델)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.7
    • /
    • pp.297-306
    • /
    • 2017
  • Citizens want more accurate forecast information using Bus Information System. However, most bus information systems that use an average based short-term prediction algorithm include many errors because they do not consider the effects of the traffic flow, signal period, and halting time. In this paper, we try to improve the precision of forecast information by analyzing the influencing factors of the error, thereby making the convenience of the citizens. We analyzed the influence factors of the error using BIS data. It is shown in the analyzed data that the effects of the time characteristics and geographical conditions are mixed, and that effects on halting time and passes speed is different. Therefore, the halt time is constructed using Generalized Additive Model with explanatory variable such as hour, GPS coordinate and number of routes, and we used Hidden Markov Model to construct a pattern considering the influence of traffic flow on the unit section. As a result of the pattern construction, accurate real-time forecasting and long-term prediction of route travel time were possible. Finally, it is shown that this model is suitable for travel time prediction through statistical test between observed data and predicted data. As a result of this paper, we can provide more precise forecast information to the citizens, and we think that long-term forecasting can play an important role in decision making such as route scheduling.