• Title/Summary/Keyword: traffic planning

Search Result 614, Processing Time 0.022 seconds

A Capacity Planning Framework for a QoS-Guaranteed Multi-Service IP network (멀티서비스를 제공하는 IP 네트워크에서의 링크용량 산출 기법)

  • Choi, Yong-Min
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.327-330
    • /
    • 2007
  • This article discusses a capacity planning method in QoS-guaranteed IP networks such as BcN (Broadband convergence Network). Since IP based networks have been developed to transport best-effort data traffic, the introduction of multi-service component in BcN requires fundamental modifications in capacity planning and network dimensioning. In this article, we present the key issues of the capacity planning in multi-service IP networks. To provide a foundation for network dimensioning procedure, we describe a systematic approach for classification and modeling of BcN traffic based on the QoS requirements of BcN services. We propose a capacity planning framework considering data traffic and real-time streaming traffic separately. The multi-service Erlang model, an extension of the conventional Erlang B loss model, is introduced to determine required link capacity for the call based real-time streaming traffic. The application of multi-service Erlang model can provide significant improvement in network planning due to sharing of network bandwidth among the different services.

  • PDF

Functional and Process Model for Traffic Engineering in Multimedia Internet (멀티미디어 인터넷 망에서의 트래픽 엔지니어링을 위한 기능 및 프로세스 모델)

  • 장희선;김경수;신현철
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.9-17
    • /
    • 2002
  • Traffic engineering function consists of traffic management, capacity management and network planning. In this paper, we present the requirements for each functional traffic management, and also present functional and process model to efficiently to handle the traffic engineering for multimedia internet services. Finally, the traffic management methods for each step are described in detail.

  • PDF

An Iterative Linear Approximation Algorithm for a Unified Model of Traffic Assignment and Line Planning in Railway Networks (통행배정-노선계획 통합 모형을 위한 선형 근사화 알고리듬 개발)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.140-147
    • /
    • 2014
  • Line planning is an important step to determine the optimal frequencies of trains given the forecasted demand for each train type. The main input data for line planning is the leg traffic demand which can be derived using suitable traffic assignment models. However most assignment models require a line plan, in other words, train frequencies or headways, so that inconsistent results just by the procedural approach to find an optimal line plan after determining leg traffic can be avoided. This paper suggests a unified model that can consider the traffic assignment and line planning, simultaneously. We further provide an elaborated approximation algorithm and, finally, provide experimental results determined for the Korean railway network.

A Real Time Traffic Flow Model Based on Deep Learning

  • Zhang, Shuai;Pei, Cai Y.;Liu, Wen Y.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2473-2489
    • /
    • 2022
  • Urban development has brought about the increasing saturation of urban traffic demand, and traffic congestion has become the primary problem in transportation. Roads are in a state of waiting in line or even congestion, which seriously affects people's enthusiasm and efficiency of travel. This paper mainly studies the discrete domain path planning method based on the flow data. Taking the traffic flow data based on the highway network structure as the research object, this paper uses the deep learning theory technology to complete the path weight determination process, optimizes the path planning algorithm, realizes the vehicle path planning application for the expressway, and carries on the deployment operation in the highway company. The path topology is constructed to transform the actual road information into abstract space that the machine can understand. An appropriate data structure is used for storage, and a path topology based on the modeling background of expressway is constructed to realize the mutual mapping between the two. Experiments show that the proposed method can further reduce the interpolation error, and the interpolation error in the case of random missing is smaller than that in the other two missing modes. In order to improve the real-time performance of vehicle path planning, the association features are selected, the path weights are calculated comprehensively, and the traditional path planning algorithm structure is optimized. It is of great significance for the sustainable development of cities.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Statistical Classification of Highway Segments for Improving the Efficiency of Short-term Traffic Count Planning (효율적인 교통량 조사를 계획하기 위한 조사구간의 통계적 특성 분류 연구)

  • Jung, YooSeok;Oh, JuSam
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • PURPOSES : The demand for extending national highways is increasing, but traffic monitoring is hindered because of resource limitations. Hence, this study classified highway segments into 5 types to improve the efficiency of short-term traffic count planning. METHODS : The traffic volume trends of 880 highway segments were classified through R-squared and linear regression analyses; the steadiness of traffic volume trends was evaluated through coefficient of variance (COV), and the normality of the data were determined through the Shapiro-Wilk W-test. RESULTS : Of the 880 segments, 574 segments had relatively low COV and were classified as type 1 segments, and 123 and 64 segments with increasing and decreasing traffic volume trends were classified as type 2 and type 3 segments, respectively; 80 segments that failed the normality test were classified as type 4, and the remaining 39 were classified as type 5 segments. CONCLUSIONS : A theoretical basis for biennial count planning was established. Biennial count is recommended for types 1~4 because their mean absolute percentage errors (MAPEs) are approximately 10%. For type 5 (MAPE =19.26%), the conventional annual count can be continued. The results of this analysis can reduce the traffic monitoring budget.

Extraction of Some Transportation Reference Planning Indices using High-Resolution Remotely Sensed Imagery

  • Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.263-271
    • /
    • 2002
  • Recently, spatial information technologies using remotely sensed imagery and functionality of GIS (Geographic Information Systems) have been widely utilized to various types of transportation-related applications. In this study, extraction programs of some practical indices, to be effectively used in transportation reference planning problem, were designed and implemented as prototyped extensions in GIS development environment: traffic flow estimation (TFL/TFB), urban rural index (URI), and accessibility index (AI). In TFL/TFB, user can obtain quantitative results on traffic flow estimation at link/block using high-resolution satellite imagery. Whereas, URI extension provides urban-rural characteristics related to road system, being considered one of important factors in transportation planning. Lastly, AI extension helps to obtain accessibility index between nodes of road segments and surrounding district areas touched or intersected with the road network system, and it also provides useful information for transportation planning problems. This approach is regarded as one of RS-T (Remote Sensing in Transportation), and it is expected to expand as new application of remotely sensed imagery.

PLANNING AGNAINST NOISE IN HONG KONG

  • Wong, Sam W. H.;Lui, Aaron S.W.;Lau, K.K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.656-661
    • /
    • 1994
  • The impacts of road traffic noise in Hong Kong are pervasive. About one million peoople are affected by road traffic noise at levels higher than a standardd recommended fro planning of new developments. The Environmental Protection Department of Hong Kong has promulgated a set of planning standards and guidelines for reference of planners, engineers and architects in their preparation of land use proposals which include road and residential developments. This paper will describe, in connection with road traffic noise in Hong Kong, the planning objectives, the various practicable mitigation measures available to a high density modern city, and the achievements through conscientious planning efforts made over the past years.

  • PDF

Connection/Bearer-Path Routing Technology (인터넷 트래픽 관리를 위한 연결/베어러-패스 라우팅 기술)

  • 신현철;장희선
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.89-97
    • /
    • 2002
  • We use the call routing to interpret the number or name for routing address in multimedia internet. The routing address is used for connection setup. The traffic engineering consists of traffic management, capacity management and network planning. In this paper, in the traffic management function, the basic functions for call routing and connection/bearer-path routing will be presented.

  • PDF

Functional Model of Traffic Engineering (트래픽 엔지니어링의 기능 모델)

  • Lim Seog-Ku
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • This paper presented high-level function model to achieve traffic engineering to construct traffic engineering infrastructure in Internet. Function model presented include traffic management, capacity management, and network planing. It is ensured that network performance is maximized under all conditions including load shifts and failures by traffic management. It is ensured that the network is designed and provisioned to meet performance objectives for network demands at minimum cost by capacity management. Also it is ensured that node and transport capacity is planned and deployed in advance of forecasted traffic growth by network planning.

  • PDF